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Lecture 1

Systems of algebraic equations

The main objects of study in algebraic geometry are systems of algebraic equa-
tions and their sets of solutions. Let k be a field and k[T1, . . . , Tn] = k[T ] be
the algebra of polynomials in n variables over k. A system of algebraic equations
over k is an expression

{F = 0}F∈S,

where S is a subset of k[T ]. We shall often identify it with the subset S.
Let K be a field extension of k. A solution of S in K is a vector (x1, . . . , xn) ∈

Kn such that, for all F ∈ S,

F (x1, . . . , xn) = 0.

Let Sol(S;K) denote the set of solutions of S in K. Letting K vary, we get
different sets of solutions, each a subset of Kn. For example, let

S = {F (T1, T2) = 0}

be a system consisting of one equation in two variables. Then
Sol(S;Q) is a subset of Q2 and its study belongs to number theory. For

example one of the most beautiful results of the theory is the Mordell Theorem
(until very recently the Mordell Conjecture) which gives conditions for finiteness
of the set Sol(S;Q).

Sol(S;R) is a subset of R2 studied in topology and analysis. It is a union of
a finite set and an algebraic curve, or the whole R2, or empty.

Sol(S;C) is a Riemann surface or its degeneration studied in complex analysis
and topology.
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2 LECTURE 1. SYSTEMS OF ALGEBRAIC EQUATIONS

All these sets are different incarnations of the same object, an affine algebraic
variety over k studied in algebraic geometry. One can generalize the notion of
a solution of a system of equations by allowing K to be any commutative k-
algebra. Recall that this means that K is a commutative unitary ring equipped
with a structure of vector space over k so that the multiplication law in K is a
bilinear map K ×K → K. The map k → K defined by sending a ∈ k to a · 1
is an isomorphism from k to a subfield of K isomorphic to k so we can and we
will identify k with a subfield of K.

The solution sets Sol(S;K) are related to each other in the following way.
Let φ : K → L be a homomorphism of k-algebras, i.e a homomorphism of rings
which is identical on k. We can extend it to the homomorphism of the direct
products φ⊕n : Kn → Ln. Then we obtain for any a = (a1, . . . , an) ∈ Sol(S;K),

φ⊕n(a) := (φ(a1), . . . , φ(an)) ∈ Sol(S;L).

This immediately follows from the definition of a homomorphism of k-algebras
(check it!). Let

sol(S;φ) : Sol(S;K)→ Sol(S;L)

be the corresponding map of the solution sets. The following properties are
immediate:

(i) sol(S; idK) = idSol(S;K), where idA denotes the identity map of a set A;

(ii) sol(S;ψ ◦ φ) = sol(S;ψ) ◦ sol(S;φ), where ψ : L→ M is another homo-
morphism of k-algebras.

One can rephrase the previous properties by saying that the correspondences

K 7→ Sol(S;K), φ→ sol(S;φ)

define a functor from the category of k-algebras Algk to the category of sets
Sets.

Definition 1.1. Two systems of algebraic equations S, S ′ ⊂ k[T ] are called
equivalent if Sol(S;K) = Sol(S ′, K) for any k-algebra K. An equivalence class
is called an affine algebraic variety over k (or an affine algebraic k-variety). If X
denotes an affine algebraic k-variety containing a system of algebraic equations
S, then, for any k-algebra K, the set X(K) = Sol(S;K) is well-defined. It is
called the set of K-points of X.
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Example 1.1. 1. The system S = {0} ⊂ k[T1, . . . , Tn] defines an affine alge-
braic variety denoted by An

k . It is called the affine n-space over k. We have, for
any k-algebra K,

Sol({0};K) = Kn.

2. The system 1 = 0 defines the empty affine algebraic variety over k and is
denoted by ∅k. We have, for any K-algebra K,

∅k(K) = ∅.

We shall often use the following interpretation of a solution a = (a1, . . . , an) ∈
Sol(S;K). Let eva : k[T ] → K be the homomorphism defined by sending each
variable Ti to ai. Then

a ∈ Sol(S;K)⇐⇒ eva(S) = {0}.

In particular, eva factors through the factor ring k[T ]/(S), where (S) stands for
the ideal generated by the set S, and defines a homomorphism of k-algebras

evS,a : k[T ]/(S)→ K.

Conversely any homomorphism k[T ]/(S) → K composed with the canonical
surjection k[T ] → k[T ]/(S) defines a homomorphism k[T ] → K. The images
ai of the variables Ti define a solution (a1, . . . , an) of S since for any F ∈ S the
image F (a) of F must be equal to zero. Thus we have a natural bijection

Sol(S;K)←→ Homk(k[T ]/(S), K).

It follows from the previous interpretations of solutions that S and (S) define
the same affine algebraic variety.

The next result gives a simple criterion when two different systems of algebraic
equations define the same affine algebraic variety.

Proposition 1.2. Two systems of algebraic equations S, S ′ ⊂ k[T ] define the
same affine algebraic variety if and only if the ideals (S) and (S ′) coincide.

Proof. The part ‘if’ is obvious. Indeed, if (S) = (S ′), then for every F ∈ S
we can express F (T ) as a linear combination of the polynomials G ∈ S ′ with
coefficients in k[T ]. This shows that Sol(S ′;K) ⊂ Sol(S;K). The opposite
inclusion is proven similarly. To prove the part ‘only if’ we use the bijection
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Sol(S;K) ←→ Homk(k[T ]/(S), K). Take K = k[T ]/(S) and a = (t1, . . . , tn)
where ti is the residue of Ti mod (S). For each F ∈ S,

F (a) = F (t1, . . . , tn) ≡ F (T1, . . . , Tn) mod (S) = 0.

This shows that a ∈ Sol(S;K). Since Sol(S;K) = Sol(S ′;K), for any F ∈ (S ′)
we have F (a) = F (T1, . . . , Tn) mod (S) = 0 in K, i.e., F ∈ (S). This gives
the inclusion (S ′) ⊂ (S). The opposite inclusion is proven in the same way.

Example 1.3. Let n = 1, S = {T = 0}, S ′ = {T p = 0}. It follows immediately
from the Proposition 1.2 that S and S ′ define different algebraic varieties X and
Y . For every k-algebra K the set Sol(S;K) consists of one element, the zero
element 0 of K. The same is true for Sol(S ′;K) if K does not contain elements
a with ap = 0 (for example, K is a field, or more general, K does not have zero
divisors). Thus the difference between X and Y becomes noticeable only if we
admit solutions with values in rings with zero divisors.

Corollary-Definition 1.4. Let X be an affine algebraic variety defined by a
system of algebraic equations S ⊂ k[T1, . . . , Tn]. The ideal (S) depends only on
X and is called the defining ideal of X. It is denoted by I(X). For any ideal
I ⊂ k[T ] we denote by V (I) the affine algebraic k-variety corresponding to the
system of algebraic equations I (or, equivalently, any set of generators of I).
Clearly, the defining ideal of V (I) is I.

The next theorem is of fundamental importance. It shows that one can always
restrict oneself to finite systems of algebraic equations.

Theorem 1.5. (Hilbert’s Basis Theorem). Let I be an ideal in the polynomial
ring k[T ] = k[T1, . . . , Tn]. Then I is generated by finitely many elements.

Proof. The assertion is true if k[T ] is the polynomial ring in one variable. In fact,
we know that in this case k[T ] is a principal ideal ring, i.e., each ideal is generated
by one element. Let us use induction on the number n of variables. Every
polynomial F (T ) ∈ I can be written in the form F (T ) = b0T

r
n + . . .+ br, where

bi are polynomials in the first n−1 variables and b0 6= 0. We will say that r is the
degree of F (T ) with respect to Tn and b0 is its highest coefficient with respect to
Tn. Let Jr be the subset k[T1, . . . , Tn−1] formed by 0 and the highest coefficients
with respect to Tn of all polynomials from I of degree r in Tn. It is immediately
checked that Jr is an ideal in k[T1, . . . , Tn−1]. By induction, Jr is generated
by finitely many elements a1,r, . . . , am(r),r ∈ k[T1, . . . , Tn−1]. Let Fir(T ), i =
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1, . . . ,m(r), be the polynomials from I which have the highest coefficient equal
to ai,r. Next, we consider the union J of the ideals Jr. By multiplying a
polynomial F by a power of Tn we see that Jr ⊂ Jr+1. This immediately implies
that the union J is an ideal in k[T1, . . . , Tn−1]. Let a1, . . . , at be generators
of this ideal (we use the induction again). We choose some polynomials Fi(T )
which have the highest coefficient with respect to Tn equal to ai. Let d(i) be
the degree of Fi(T ) with respect to Tn. Put N = max{d(1), . . . , d(t)}. Let us
show that the polynomials

Fir, i = 1, . . . ,m(r), r < N, Fi, i = 1, . . . , t,

generate I.
Let F (T ) ∈ I be of degree r ≥ N in Tn. We can write F (T ) in the form

F (T ) = (c1a1 + . . .+ ctat)T
r
n + . . . =

∑
1≤i≤t

ciT
r−d(i)
n Fi(T ) + F ′(T ),

where F ′(T ) is of lower degree in Tn. Repeating this for F ′(T ), if needed, we
obtain

F (T ) ≡ R(T ) mod (F1(T ), . . . , Ft(T )),

where R(T ) is of degree d strictly less than N in Tn. For such R(T ) we can
subtract from it a linear combination of the polynomials Fi,d and decrease its
degree in Tn. Repeating this, we see that R(T ) belongs to the ideal generated
by the polynomials Fi,r, where r < N . Thus F can be written as a linear
combination of these polynomials and the polynomials F1, . . . , Ft. This proves
the assertion.

Finally, we define a subvariety of an affine algebraic variety.

Definition 1.2. An affine algebraic variety Y over k is said to be a subvariety
of an affine algebraic variety X over k if Y (K) ⊂ X(K) for any k-algebra K.
We express this by writing Y ⊂ X.

Clearly, every affine algebraic variety over k is a subvariety of some n-dimensional
affine space An

k over k. The next result follows easily from the proof of Propo-
sition 1.2:

Proposition 1.6. An affine algebraic variety Y is a subvariety of an affine variety
X if and only if I(X) ⊂ I(Y ).
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Exercises.
1. For which fields k do the systems

S = {σi(T1, . . . , Tn) = 0}i=1,...,n, and S ′ = {
n∑
j=1

T ij = 0}i=1,...,n

define the same affine algebraic varieties? Here σi(T1, . . . , Tn) denotes the ele-
mentary symmetric polynomial of degree i in T1, . . . , Tn.
2. Prove that the systems of algebraic equations over the field Q of rational
numbers

{T 2
1 +T2 = 0, T1 = 0} and {T 2

2 T
2
1 +T 2

1 +T 3
2 +T2+T1T2 = 0, T2T

2
1 +T 2

2 +T1 = 0}

define the same affine algebraic Q-varieties.
3. Let X ⊂ An

k and X ′ ⊂ Am
k be two affine algebraic k-varieties. Let us identify

the Cartesian product Kn×Km with Kn+m. Define an affine algebraic k-variety
such that its set of K-solutions is equal to X(K)×X ′(K) for any k-algebra K.
We will denote it by X × Y and call it the Cartesian product of X and Y .
4. Let X and X ′ be two subvarieties of An

k . Define an affine algebraic variety
over k such that its set of K-solutions is equal to X(K) ∩ X ′(K) for any k-
algebra K. It is called the intersection of X and X ′ and is denoted by X ∩X ′.
Can you define in a similar way the union of two algebraic varieties?
5. Suppose that S and S ′ are two systems of linear equations over a field k.
Show that (S) = (S ′) if and only if Sol(S; k) = Sol(S ′; k).
6. A commutative ring A is called Noetherian if every ideal in A is finitely gener-
ated. Generalize Hilbert’s Basis Theorem by proving that the ring A[T1, . . . , Tn]
of polynomials with coefficients in a Noetherian ring A is Noetherian.



Lecture 2

Affine algebraic sets

Let X be an affine algebraic variety over k. For different k-algebras K the sets of
K-points X(K) could be quite different. For example it could be empty although
X 6= ∅k. However if we choose K to be algebraically closed, X(K) is always
non-empty unless X = ∅k. This follows from the celebrated Nullstellensatz of
Hilbert that we will prove in this Lecture.

Definition 2.1. Let K be an algebraically closed field containing the field k. A
subset V of Kn is said to be an affine algebraic k-set if there exists an affine
algebraic variety X over k such that V = X(K).

The field k is called the ground field or the field of definition of V . Since
every polynomial with coefficients in k can be considered as a polynomial with
coefficients in a field extension of k, we may consider an affine algebraic k-set as
an affine algebraic K-set. This is often done when we do not want to specify to
which field the coefficients of the equations belong. In this case we call V simply
an affine algebraic set.

First we will see when two different systems of equations define the same
affine algebraic set. The answer is given in the next theorem. Before we state
it, let us recall that for every ideal I in a ring A its radical rad(I) is defined by

rad(I) = {a ∈ A : an ∈ I for some n ≥ 0}.
It is easy to verify that rad(I) is an ideal in A. Obviously, it contains I.

Theorem 2.1. (Hilbert’s Nullstellensatz). Let K be an algebraically closed field
and S and S ′ be two systems of algebraic equations in the same number of
variables over a subfield k. Then

Sol(S;K) = Sol(S ′;K)⇐⇒ rad((S)) = rad((S ′)).

7



8 LECTURE 2. AFFINE ALGEBRAIC SETS

Proof. Obviously, the set of zeroes of an ideal I and its radical rad(I) in Kn

are the same. Here we only use the fact that K has no zero divisors so that
F n(a) = 0 ⇐⇒ F (a) = 0. This proves ⇐. Let V be an algebraic set in Kn

given by a system of algebraic equations S. Let us show that the radical of the
ideal (S) can be defined in terms of V only:

rad((S)) = {F ∈ k[T ] : F (a) = 0 ∀a ∈ V }.

This will obviously prove our assertion. Let us denote the right-hand side by I.
This is an ideal in k[T ] that contains the ideal (S). We have to show that for any
G ∈ I, Gr ∈ (S) for some r ≥ 0. Now observe that the system Z of algebraic
equations

{F (T ) = 0}F∈S, 1− Tn+1G(T ) = 0

in variables T1, . . . , Tn, Tn+1 defines the empty affine algebraic set in Kn+1.
In fact, if a = (a1, . . . , an, an+1) ∈ Sol(Z;K), then F (a1, . . . , an, an+1) =
F (a1, . . . , an) = 0 for all F ∈ S. This implies (a1, . . . , an) ∈ V and hence

G(a1, . . . , an, an+1) = G(a1, . . . , an) = 0

and (1− Tn+1G)(a1, . . . , an, an+1) = 1− an+1G(a1, . . . , an, an+1) = 1 6= 0. We
will show that this implies that the ideal (Z) contains 1. Suppose this is true.
Then, we may write

1 =
∑
F∈S

PFF +Q(1− Tn+1G)

for some polynomials PF and Q in T1, . . . , Tn+1. Plugging in 1/G instead of
Tn+1 and reducing to the common denominator, we obtain that a certain power
of G belongs to the ideal generated by the polynomials F, F ∈ S.

So, we can concentrate on proving the following assertion:

Lemma 2.2. If I is a proper ideal in k[T ], then the set of its solutions in an
algebraically closed field K is non-empty.

We use the following simple assertion which easily follows from the Zorn
Lemma: every ideal in a ring is contained in a maximal ideal unless it coincides
with the whole ring. Let m be a maximal ideal containing our ideal I. We have
a homomorphism of rings φ : k[T ]/I → A = k[T ]/m induced by the factor map
k[T ] → k[T ]/m . Since m is a maximal ideal, the ring A is a field containing
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k as a subfield. Note that A is finitely generated as a k-algebra (because k[T ]
is). Suppose we show that A is an algebraic extension of k. Then we will be
able to extend the inclusion k ⊂ K to a homomorphism A → K (since K is
algebraically closed), the composition k[T ]/I → A → K will give us a solution
of I in Kn.

Thus Lemma 2.2 and hence our theorem follows from the following:

Lemma 2.3. Let A be a finitely generated algebra over a field k. Assume A is
a field. Then A is an algebraic extension of k.

Before proving this lemma, we have to remind one more definition from
commutative algebra. Let A be a commutative ring without zero divisors (an
integral domain) and B be another ring which contains A. An element x ∈ B is
said to be integral over A if it satisfies a monic equation : xn+a1x

n−1+. . .+an =
0 with coefficients ai ∈ A. If A is a field this notion coincides with the notion
of algebraicity of x over A. We will need the following property which will be
proved later in Corollary 10.2.

Fact: The subset of elements in B which are integral over A is a subring of
B.

We will prove Lemma 2.3 by induction on the minimal number r of generators
t1, . . . , tr of A. If r = 1, the map k[T1]→ A defined by T1 7→ t1 is surjective. It
is not injective since otherwise A ∼= k[T1] is not a field. Thus A ∼= k[T1]/(F ) for
some F (T1) 6= 0, hence A is a finite extension of k of degree equal to the degree
of F . Therefore A is an algebraic extension of k. Now let r > 1 and suppose
the assertion is not true for A. Then, one of the generators t1, . . . , tr of A is
transcendental over k. Let it be t1. Then A contains the field F = k(t1), the
minimal field containing t1. It consists of all rational functions in t1, i.e. ratios of
the form P (t1)/Q(t1) where P,Q ∈ k[T1]. Clearly A is generated over F by r−1
generators t2, . . . , tr. By induction, all ti, i 6= 1, are algebraic over F . We know
that each ti, i 6= 1, satisfies an equation of the form ait

d(i)
i +. . . = 0, ai 6= 0, where

the coefficients belong to the field F . Reducing to the common denominator, we
may assume that the coefficients are polynomial in t1, i.e., belong to the smallest
subring k[t1] of A containing t1. Multiplying each equation by a

d(i)−1
i , we see

that the elements aiti are integral over k[t1]. At this point we can replace the
generators ti by aiti to assume that each ti is integral over k[t1]. Now using the
Fact we obtain that every polynomial expression in t2, . . . , tr with coefficients
in k[t1] is integral over k[t1]. Since t1, . . . , tr are generators of A over k, every
element in A can be obtained as such polynomial expression. So every element
from A is integral over k[t1]. This is true also for every x ∈ k(t1). Since t1
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is transcendental over k, k[x1] is isomorphic to the polynomial algebra k[T1].
Thus we obtain that every fraction P (T1)/Q(T1), where we may assume that
P and Q are coprime, satisfies a monic equation Xn + A1X

n + . . . + An = 0
with coefficients from k[T1]. But this is obviously absurd. In fact if we plug in
X = P/Q and clear the denominators we obtain

P n + A1QP
n−1 + . . .+ AnQ

n = 0,

hence

P n = −Q(A1P
n−1 + · · ·+ AnQ

n−1).

This implies that Q divides P n and since k[T1] is a principal ideal domain, we
obtain that Q divides P contradicting the assumption on P/Q. This proves
Lemma 2 and also the Nullstellensatz.

Corollary 2.4. Let X be an affine algebraic variety over a field k, K is an
algebraically closed extension of k. Then X(K) = ∅ if and only if 1 ∈ I(X).

An ideal I in a ring A is called radical if rad(I) = I. Equivalently, I is radical
if the factor ring A/I does not contain nilpotent elements (a nonzero element
of a ring is nilpotent if some power of it is equal to zero).

Corollary 2.5. Let K be an algebraically closed extension of k. The correspon-
dences

V 7→ I(V ) := {F (T ) ∈ k[T ] : F (x) = 0 ∀x ∈ V },

I 7→ V (I) := {x ∈ Kn : F (x) = 0 ∀F ∈ I}

define a bijective map

{affine algebraic k-sets in Kn} → {radical ideals in k[T ]}.

Corollary 2.6. Let k be an algebraically closed field. Any maximal ideal in
k[T1, . . . , Tn] is generated by the polynomials T1 − c1, . . . , Tn − cn for some
c1, . . . , cn ∈ k.

Proof. Let m be a maximal ideal. By Nullstellensatz, V (m) 6= ∅. Take some
point x = (c1, . . . , cn) ∈ V (m). Now m ⊂ I({x}) but since m is maximal we
must have the equality. Obviously, the ideal (T1−c1, . . . , Tn−cn) is maximal and
is contained in I({x}) = m. This implies that (T1 − c1, . . . , Tn − cn) = m.
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Next we shall show that the set of algebraic k-subsets in Kn can be used
to define a unique topology in Kn for which these sets are closed subsets. This
follows from the following:

Proposition 2.7. (i) The intersection ∩s∈SVs of any family {Vs}s∈S of affine
algebraic k-sets is an affine algebraic k-set in Kn.

(ii) The union ∪s∈SVs of any finite family of affine algebraic k-sets is an affine
algebraic k-set in Kn.

(iii) ∅ and Kn are affine algebraic k-sets.

Proof. (i) Let Is = I(Vs) be the ideal of polynomials vanishing on Vs. Let
I =

∑
s Is be the sum of the ideals Is, i.e., the minimal ideal of k[T ] containing

the sets Is. Since Is ⊂ I, we have V (I) ⊂ V (Is) = Vs. Thus V (I) ⊂ ∩s∈SVs.
Since each f ∈ I is equal to a finite sum

∑
fs, where fs ∈ Is, we see that

f vanishes at each x from the intersection. Thus x ∈ V (I), and we have the
opposite inclusion.

(ii) Let I be the ideal generated by products
∏

s fs, where fs ∈ Is. If
x ∈ ∪sVs, then x ∈ Vs for some s ∈ S. Hence all fs ∈ Is vanishes at x.
But then all products vanishes at x, and therefore x ∈ V (I). This shows that
∪sVs ⊂ V (I). Conversely, suppose that all products vanish at x but x 6∈ Vs for
any s. Then, for any s ∈ S there exists some fs ∈ Is such that fs(x) 6= 0. But
then the product

∏
s fs ∈ I does not vanish at x. This contradiction proves the

opposite inclusion.
(iii) This is obvious, ∅ is defined by the system {1 = 0}, Kn is defined by the

system {0 = 0}.

Using the previous Proposition we can define the topology on Kn by declaring
that its closed subsets are affine algebraic k- subsets. The previous proposition
verifies the axioms. This topology on Kn is called the Zariski k-topology (or
Zariski topology if k = K). The corresponding topological space Kn is called
the n-dimensional affine space over k and is denoted by An

k(K). If k = K, we
drop the subscript k and call it the n-dimensional affine space.

Example 2.8. A proper subset in A1(K) is closed if and only if it is finite.
In fact, every ideal I in k[T ] is principal, so that its set of solutions coincides
with the set of solutions of one polynomial. The latter set is finite unless the
polynomial is identical zero.
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Remark 2.9. As the previous example easily shows the Zariski topology in Kn is
not Hausdorff (=separated), however it satisfies a weaker property of separability.
This is the property

(T1): for any two points x 6= y in An(k), there exists an open subset U such
that x ∈ U but y 6∈ U (see Problem 4).

Any point x ∈ V = X(K) is defined by a homomorphism of k-algebras
evx : k[X]/I → K. Let p = Ker(evx). Since K is a field, p is a prime ideal. It
corresponds to a closed subset which is the closure of the set {x}. Thus, if x is
closed in the Zariski topology, the ideal p must be a maximal ideal. By Lemma
2.3, in this case the quotient ring (k[X]/I)/px is an algebraic extension of k.
Conversely, a finitely generated domain contained in an algebraic extension of k
is a field (we shall prove it later in Lecture 10). Points x with the same ideal
Ker(evx) differ by a k-automorphism of K. Thus if we assume that K is an
algebraically closed algebraic extension of k then all points of V are closed.

Problems.
1. Let A = k[T1, T2]/(T 2

1 − T 3
2 ). Find an element in the field of fractions of A

which is integral over A but does not belong to A.
2. Let V and V ′ be two affine algebraic sets in Kn. Prove that I(V ∪ V ′) =
I(V ) ∩ I(V ′). Give an example where I(V ) ∩ I(V ′) 6= I(V )I(V ′).
3. Find the radical of the ideal in k[T1, T2] generated by the polynomials T 2

1 T2

and T1T
3
2 .

4. Show that the Zariski topology in An(K), n 6= 0, is not Hausdorff but satisfies
property (T1). Is the same true for An

k(K) when k 6= K?
5. Find the ideal I(V ) of the algebraic subset of Kn defined by the equations
T 3

1 = 0, T 3
2 = 0, T1T2(T1 + T2) = 0. Does T1 + T2 belong to I(V )?

6. What is the closure of the subset {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} in the
Zariski topology?



Lecture 3

Morphisms of affine algebraic
varieties

In Lecture 1 we defined two systems of algebraic equations to be equivalent if
they have the same sets of solutions. This is very familiar from the theory of
linear equations. However this notion is too strong to work with. We can succeed
in solving one system of equation if we would be able to find a bijective map of
its set of solutions to the set of solutions of another system of equations which
can be solved explicitly. This idea is used for the following notion of a morphism
between affine algebraic varieties.

Definition 3.1. A morphism f : X → Y of affine algebraic varieties over a field
k is a set of maps fK : X(K)→ Y (K) where K runs over the set of k-algebras
such that for every homomorphism of k-algebras φ : K → K ′ the following
diagram is commutative:

X(K)
X(φ) //

fK
��

X(K ′)

fK′
��

Y (K)
Y (φ) // Y (K ′)

(3.1)

We denote by MorAff/k(X, Y ) the set of morphisms from X to Y .
The previous definition is a special case of the notion of a morphism (or, a

natural transformation) of functors.
Let X be an affine algebraic variety. We know from Lecture 1 that for every

k-algebra K there is a natural bijection

X(K)→ Homk(k[T ]/I(X), K). (3.2)

13
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From now on we will denote the factor algebra k[T ]/I(X) by O(X) and will
call it the coordinate algebra of X. We can view the elements of this algebra as
functions on the set of points of X. In fact, given a K-point a ∈ X(K) and an
element ϕ ∈ O(X) we find a polynomial P ∈ k[T ] representing ϕ and put

ϕ(a) = P (a).

Clearly this definition does not depend on the choice of the representative. An-
other way to see this is to view the point a as a homomorphism eva : O(X)→ K.
Then

ϕ(a) = eva(ϕ).

Note that the range of the function ϕ depends on the argument: if a is a K-point,
then ϕ(a) ∈ K.

Let ψ : A → B be a homomorphism of k-algebras. For every k-algebra K
we have a natural map of sets Homk(B,K)→ Homk(A,K), which is obtained
by composing a map B → K with ψ. Using the bijection (3.2) we see that any
homomorphism of k-algebras

ψ : O(Y )→ O(X)

defines a morphism f : X → Y by setting, for any α : O(X)→ K,

fK(α) = α ◦ ψ. (3.3)

Thus we have a natural map of sets

ξ : Homk(O(Y ),O(X))→ MorAff/k(X, Y ). (3.4)

Recall how this correspondence works. Take a K-point a = (a1, . . . , an) ∈
X(K) in a k-algebra K. It defines a homomorphism

eva : O(X) = k[T1, . . . , Tn]/I(X)→ K

by assigning ai to Ti, i = 1, . . . , n. Composing this homomorphism with a
given homomorphism ψ : O(Y ) = k[T1, . . . , Tm]/I(Y ) → O(X), we get a
homomorphism eva ◦ φ : O(Y ) → K. Let b = (b1, . . . , bm) where bi = eva ◦
φ(Ti), i = 1, . . . ,m. This defines a K-point of Y . Varying K, we obtain a
morphism X → Y which corresponds to the homomorphism ψ.

Proposition 3.1. The map ξ from (3.4) is bijective.
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Proof. Let f : X → Y be a morphism. It defines a homomorphism

fO(X) : Homk(O(X),O(X))→ Homk(O(Y ),O(X)).

The image of the identity homomorphism idO(X) is a homomorphism ψ : O(Y )→
O(X). Let us show that ξ(ψ) = f . Let α ∈ X(K) = Homk(O(X), K). By
definition of a morphism of affine algebraic k-varieties we have the following
commutative diagram:

X(K) = Homk(O(X), K)
fK // Y (K) = Homk(O(Y ), K)

X(O(X)) = Homk(O(X),O(X))

α◦?

OO

fO(X) // Y (O(X)) = Homk(O(Y ),O(X))

α◦?

OO

Take the identity map idO(X) in the left bottom set. It goes to the element α
in the left top set. The bottom horizontal arrow sends idO(X) to ψ. The right
vertical arrow sends it to α ◦ ψ. Now, because of the commutativity of the
diagram, this must coincide with the image of α under the top arrow, which is
fK(α). This proves the surjectivity. The injectivity is obvious.

As soon as we know what is a morphism of affine algebraic k-varieties we
know how to define an isomorphism. This will be an invertible morphism. We
leave to the reader to define the composition of morphisms and the identity
morphism to be able to say what is the inverse of a morphism. The following
proposition is clear.

Proposition 3.2. Two affine algebraic k-varieties X and Y are isomorphic if
and only if their coordinate k-algebras O(X) and O(Y ) are isomorphic.

Let φ : O(Y ) → O(X) be a homomorphism of the coordinate algebras of
two affine algebraic varieties given by a system S in unknowns T1, . . . , Tn and
a system S ′ in unknowns T ′1, . . . , T

′
m. Since O(Y ) is a homomorphic image of

the polynomial algebra k[T ], φ is defined by assigning to each T ′i an element
pi ∈ O(X). The latter is a coset of a polynomial Pi(T ) ∈ k[T ]. Thus φ is
defined by a collection of m polynomials (P1(T ), . . . , Pm(T )) in unknowns Tj.
Since the homomorphism k[T ] → O(X), Ti → Pi(T ) + I(X) factors through
the ideal (Y ), we have

F (P1(T ), . . . , Pm(T )) ∈ I(X), ∀F (T ′1, . . . , T
′
n) ∈ I(Y ). (3.5)
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Note that it suffices to check the previous condition only for generators of the
ideal I(Y ), for example for the polynomials defining the system of equations Y .
In terms of the polynomials (P1(T ), . . . , Pm(T )) satisfying (3.5), the morphism
f : X → Y is given as follows:

fK(a) = (P1(a), . . . , Pm(a)) ∈ Y (K), ∀a ∈ X(K).

It follows from the definitions that a morphism φ given by polynomials
((P1(T ), . . . , Pm(T )) satisfying (3.5) is an isomorphism if and only if there exist
polynomials (Q1(T ′), . . . , Qn(T ′)) such that

G(Q1(T ′), . . . , Qn(T ′)) ∈ I(Y ), ∀G ∈ I(X),

Pi(Q1(T ′), . . . , Qn(T ′)) ≡ T ′i mod I(Y ), i = 1, . . . ,m,

Qj(P1(T ), . . . , Pm(T )) ≡ Tj mod I(X), j = 1, . . . , n.

The main problem of (affine) algebraic geometry is to classify affine algebraic
varieties up to isomorphism. Of course, this is a hopelessly difficult problem.

Example 3.3. 1. Let Y be given by the equation T 2
1 − T 3

2 = 0, and X = A1
k

with O(X) = k[T ]. A morphism f : X → Y is given by the pair of polynomials
(T 3, T 2). For every k-algebra K,

fK(a) = (a3, a2) ∈ Y (K), a ∈ X(K) = K.

The affine algebraic varieties X and Y are not isomorphic since their coor-
dinate rings are not isomorphic. The quotient field of the algebra O(Y ) =
k[T1, T2]/(T 2

1 − T 3
2 ) contains an element T̄1/T̄2 which does not belong to the

ring but whose square is an element of the ring (= T̄2). Here the bar denotes the
corresponding coset. As we remarked earlier in Lecture 2, the ring of polynomials
does not have such a property.

2. The ‘circle’ X = {T 2
1 + T 2

2 − 1 = 0} is isomorphic to the ‘hyperbola’
Y = {T1T2 − 1 = 0} provided that the field k contains a square root of −1 and
char(k) 6= 2.

3. Let k[T1, . . . , Tm] ⊂ k[T1, . . . , Tn], m ≤ n, be the natural inclusion of the
polynomial algebras. It defines a morphism An

k → Am
k . For any k-algebra K it

defines the projection map Kn → Km, (a1, . . . , an) 7→ (a1, . . . , am).

Consider the special case of morphisms f : X → Y , where Y = A1
k (the affine

line). Then f is defined by a homomorphism of the corresponding coordinate
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algebras: O(Y ) = k[T1] → O(X). Every such homomorphism is determined by
its value at T1, i.e. by an element of O(X). This gives us one more interpretation
of the elements of the coordinate algebra O(X). This time they are morphisms
from X to A1

k and hence again can be thought as functions on X.
Let f : X → Y be a morphism of affine algebraic varieties. We know that it

arises from a homomorphism of k-algebras f ∗ : O(Y )→ O(X).

Proposition 3.4. For any ϕ ∈ O(Y ) = MorAff/k(Y,A1
k),

f ∗(ϕ) = ϕ ◦ f.

Proof. This follows immediately from the above definitions.

This justifies the notation f ∗ (the pull-back of a function).
By now you must feel comfortable with identifying the set X(K) of K-

solutions of an affine algebraic k-variety X with homomorphisms O(X) →
K. The identification of this set with a subset of Kn is achieved by choos-
ing a set of generators of the k-algebra O(X). Forgetting about generators
gives a coordinate-free definition of the set X(K). The correspondence K →
Hom(O(X), K) has the property of naturality, i.e. a homomorphism of k-
algebras K → K ′ defines a map Homk(O(X), K) → Homk(O(X), K ′) such
that a natural diagram, which we wrote earlier, is commutative. This leads to a
generalization of the notion of an affine k-variety.

Definition 3.2. An (abstract) affine algebraic k-variety is the correspondence
which assigns to each k-algebra K a set X(K). This assignment must satisfy
the following properties:

(i) for each homomorphism of k-algebras φ : K → K ′ there is a map X(φ) :
X(K)→ X(K ′);

(ii) X(idK) = idX(K);

(iii) for any φ1 : K → K ′ and φ2 : K ′ → K ′′ we have X(φ2 ◦ φ1) = X(φ2) ◦
X(φ1);

(iv) there exists a finitely generated k-algebra A such that for each K there is
a bijection X(K) → Homk(A,K) and the maps X(φ) correspond to the
composition maps Homk(A,K)→ Homk(A,K

′).
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We leave to the reader to define a morphism of abstract affine algebraic k-
varieties and prove that they are defined by a homomorphism of the corresponding
algebras defined by property (iii). A choice of n generators f1, . . . , fn of A defines
a bijection from X(K) to a subset Sol(I;K) ⊂ Kn, where I is the kernel of the
homomorphism k[T1, . . . , Tn]→ A, defined by Ti 7→ fi. This bijection is natural
in the sense of the commutativity of the natural diagrams.

Example 3.5. 4. The correspondence K → Sol(S;K) is an abstract affine
algebraic k-variety. The corresponding algebra A is k[T ]/(S).
5. The correspondence K → K∗ ( = invertible elements in K) is an abstract
affine algebraic k-variety. The corresponding algebra A is equal to k[T1, T2]/(T1T2−
1). The cosets of T1 and T2 define a set of generators such that the corresponding
affine algebraic k-variety is a subvariety of A2. It is denoted by Gm,k and is called
the multiplicative algebraic group over k. Note that the maps X(K)→ X(K ′)
are homomorphisms of groups.
6. More generally we may consider the correspondence K → GL(n,K) (=invert-
ible n× n matrices with entries in K). It is an abstract affine k-variety defined
by the quotient algebra k[T11, . . . , Tnn, U ]/(det((Tij)U − 1). It is denoted by
GLk(n) and is called the general linear group of degree n over k.

Remark 3.6. We may make one step further and get rid of the assumption in
(iv) that A is a finitely generated k-algebra. The corresponding generalization is
called an affine k-scheme. Note that, if k is algebraically closed, the algebraic set
X(k) defined by an affine algebraic k-variety X is in a natural bijection with the
set of maximal ideals in O(X). This follows from Corollary 2.6 of the Hilbert’s
Nullstellensatz. Thus the analog of the set X(k) for the affine scheme is the
set Spm(A) of maximal ideals in A. For example take an affine scheme defined
by the ring of integers Z. Each maximal ideal is a principal ideal generated by
a prime number p. Thus the set X(k) becomes the set of prime numbers. A
number m ∈ Z becomes a function on the set X(k). It assigns to a prime
number p the image of m in Z/(p) = Fp, i.e., the residue of m modulo p.

Now, we specialize the notion of a morphism of affine algebraic varieties to
define the notion of a regular map of affine algebraic sets.

Recall that an affine algebraic k-set is a subset V of Kn of the form X(K),
where X is an affine algebraic variety over k and K is an algebraically closed
extension of k. We can always choose V to be equal V (I),where I is a radical
ideal. This ideal is determined uniquely by V and is equal to the ideal I(V )
of polynomials vanishing on V (with coefficients in k). Each morphism f :
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X → Y of algebraic varieties defines a map fK : X(K) = V → Y (K) =
W of the algebraic sets. So it is natural to take for the definition of regular
maps of algebraic sets the maps arising in this way. We know that f is given
by a homomorphism of k-algebras f ∗ : O(Y ) = k[T ′]/I(W )) → O(X) =
k[T ]/I(V ). Let Pi(T1, . . . , Tn), i = 1, . . . ,m, be the representatives in k[T ] of
the images of T ′i mod I(W ) under f ∗. For any a = (a1, . . . , an) ∈ V viewed as
a homomorphism O(X)→ K its image fK(a) is a homomorphism O(Y )→ K
given by sending T ′i to Pi(a), i = 1, . . . ,m. Thus the map fK is given by the
formula

fK(a) = (P1(a1, . . . , an), . . . , Pm(a1, . . . , an)).

Note that this map does not depend on the choice of the representatives Pi of
f ∗(T ′i mod I(W )) since any polynomial from I(W ) vanishes at a. All of this
motivates the following

Definition 3.3. A regular function on V is a map of sets f : V → K such that
there exists a polynomial F (T1, . . . , Tn) ∈ k[T1, . . . , Tn] with the property

F (a1, . . . , an) = f(a1, . . . , an), ∀a = (a1, . . . , an) ∈ V.

A regular map of affine algebraic sets f : V → W ⊂ Km is a map of sets such
that its composition with each projection map pri : Km → K, (a1, . . . , an) 7→ ai,
is a regular function. An invertible regular map such that its inverse is also a
regular map is called a biregular map of algebraic sets.

Remark 3.7. Let k = Fp be a prime field. The map K → K defined by x→ xp

is regular and bijective (it is surjective because K is algebraically closed and it is
injective because xp = yp implies x = y). However, the inverse is obviously not
regular.

Sometimes, a regular map is called a polynomial map. It is easy to see that it
is a continuous map of affine algebraic k-sets equipped with the induced Zariski
topology. However, the converse is false (Problem 7).

It follows from the definition that a regular function f : V → K is given
by a polynomial F (T ) which is defined uniquely modulo the ideal I(V ) (of
polynomials vanishing identically on V ). Thus the set of all regular functions
on V is isomorphic to the factor-algebra O(V ) = k[T ]/I(V ). It is called the
algebra of regular functions on V , or the coordinate algebra of V . Clearly it is
isomorphic to the coordinate algebra of the affine algebraic variety X defined by
the ideal I(V ). Any regular map f : V → W defines a homomorphism

f ∗ : O(W )→ O(V ), ϕ 7→ ϕ ◦ f,
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and conversely any homomorphism α : O(W )→ O(V ) defines a unique regular
map f : V → W such that f ∗ = α. All of this follows from the discussion
above.

Problems.
1. Let X be the subvariety of A2

k defined by the equation T 2
2 −T 2

1 −T 3
1 = 0 and

let f : A1
k → X be the morphism defined by the formula T1 → T 2 − 1, T2 →

T (T 2− 1). Show that f ∗(O(X)) is the subring of O(A1
k) = k[T ] which consists

of polynomials g(T ) such that g(1) = g(−1) (if char(k) 6= 2) and consists of
polynomials g(T ) with g(1)′ = 0 if char(k) = 2. If char(k) = 2 show that X is
isomorphic to the variety Y from Example 3.3 1.
2. Prove that the variety defined by the equation T1T2−1 = 0 is not isomorphic
to the affine line A1

k.
3. Let f : A2

k(K)→ A2
k(K) be the regular map defined by the formula (x, y) 7→

(x, xy). Find its image. Will it be closed, open, dense in the Zariski topology?
4. Find all isomorphisms from A1

k to A1
k.

5. Let X and Y be two affine algebraic varieties over a field k, and let X × Y
be its Cartesian product (see Problem 4 in Lecture 1). Prove that O(X × Y ) ∼=
O(X)⊗k O(Y ).
6. Prove that the correspondence K → O(n,K) ( = n×n-matrices with entries
in K satisfying MT = M−1) is an abstract affine algebraic k-variety.
7. Give an example of a continuous map in the Zariski topology which is not a
regular map.



Lecture 4

Irreducible algebraic sets and
rational functions

We know that two affine algebraic k-sets V and V ′ are isomorphic if and only if
their coordinate algebras O(V ) and O(V ′) are isomorphic. Assume that both of
these algebras are integral domains (i.e. do not contain zero divisors). Then their
fields of fractions R(V ) and R(V ′) are defined. We obtain a weaker equivalence
of varieties if we require that the fields R(V ) and R(V ′) are isomorphic. In
this lecture we will give a geometric interpretation of this equivalence relation by
means of the notion of a rational function on an affine algebraic set.

First let us explain the condition that O(V ) is an integral domain. We recall
that V ⊂ Kn is a topological space with respect to the induced Zariski k-
topology of Kn. Its closed subsets are affine algebraic k-subsets of V . From
now on we denote by V (I) the affine algebraic k-subset of Kn defined by the
ideal I ⊂ k[T ]. If I = (F ) is the principal ideal generated by a polynomial F , we
write V ((F )) = V (F ). An algebraic subset of this form, where (F ) 6= (0), (1),
is called a hypersurface.

Definition 4.1. A topological space V is said to be reducible if it is a union of
two proper non-empty closed subsets (equivalently, there are two open disjoint
proper subsets of V ). Otherwise V is said to be irreducible. By definition the
empty set is irreducible. An affine algebraic k-set V is said to be reducible (resp.
irreducible) if the corresponding topological space is reducible (resp. irreducible).

Remark 4.1. Note that a Hausdorff topological space is always reducible unless it
consists of at most one point. Thus the notion of irreducibility is relevant only for
non-Hausdorff spaces. Also one should compare it with the notion of a connected
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space. A topological spaces X is connected if it is not equal to the union of two
disjoint proper closed (equivalently open) subsets. Thus an irreducible space is
always connected but the converse is not true in general.

For every affine algebraic set V we denote by I(V ) the ideal of polynomials
vanishing on V . Recall that, by Nullstellensatz, I(V (I)) = rad(I).

Proposition 4.2. An affine algebraic set V is irreducible if and only if its coor-
dinate algebra O(V) has no zero divisors.

Proof. Suppose V is irreducible and a, b ∈ O(V ) are such that ab = 0. Let
F,G ∈ k[T ] be their representatives in k[T ]. Then ab = FG+ I(V ) = 0 implies
that the polynomial FG vanishes on V . In particular, V ⊂ V (F ) ∪ V (G) and
hence V = V1 ∪ V2 is the union of two closed subsets V1 = V ∩ V (F ) and
V2 = V ∩V (G). By assumption, one of them, say V1, is equal to V . This implies
that V ⊂ V (F ), i.e., F vanishes on V , hence F ∈ I(V ) and a = 0. This proves
that O(V ) does not have zero divisors.

Conversely, suppose that O(V ) does not have zero divisors. Let V = V1∪V2

where V1 and V2 are closed subsets. Suppose V1 6⊂ V2 and V2 6⊂ V1. Then there
exists F ∈ I(V1) \ I(V2) and G ∈ I(V2) \ I(V1). Then FG ∈ I(V1 ∪ V2) and
(F + I(V ))(G + I(V )) = 0 in O(V ). Since O(V ) has no zero divisors, one of
the cosets is zero, say F + I(V ). This implies that F ∈ I(V ) contradicting its
choice.

Definition 4.2. A topological space V is called Noetherian if every strictly de-
creasing sequence Z1 ⊃ Z2 ⊃ . . . ⊃ Zk ⊃ of closed subsets is finite.

Proposition 4.3. An affine algebraic set is a Noetherian topological space.

Proof. Every decreasing sequence of closed subsets Z1 ⊃ Z2 ⊃ . . . ⊃ Zj ⊃ . . .
is defined by the increasing sequence of ideals I(V1) ⊂ I(V2) ⊂ . . .. By Hilbert’s
Basis Theorem their union I = ∪jI(Vj) is an ideal generated by finitely many
elements F1, . . . , Fm. All of them lie in some I(VN). Hence I = I(VN) and
I(Vj) = I = I(VN) for j ≥ N . Returning to the closed subsets we deduce that
Zj = ZN for j ≥ N .

Theorem 4.4. 1. Let V be a Noetherian topological space. Then V is a union
of finitely many irreducible closed subsets Vk of V . Furthermore, if Vi 6⊂ Vj for
any i 6= j, then the subsets Vk are defined uniquely.
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Proof. Let us prove the first part. If V is irreducible, then the assertion is obvious.
Otherwise, V = V1 ∪ V2, where Vi are proper closed subsets of V . If both of
them are irreducible, the assertion is true. Otherwise, one of them, say V1 is
reducible. Hence V1 = V11∪V12 as above. Continuing in this way, we either stop
somewhere and get the assertion or obtain an infinite strictly decreasing sequence
of closed subsets of V . The latter is impossible because V is Noetherian. To
prove the second assertion, we assume that

V = V1 ∪ . . . ∪ Vk = W1 ∪ . . . ∪Wt,

where neither Vi (resp. Wj) is contained in another Vi′ (resp. Wj′). Obviously,

V1 = (V1 ∩W1) ∪ . . . ∪ (V1 ∩Wt).

Since V1 is irreducible, one of the subsets V1 ∩Wj is equal to V1, i.e., V1 ⊂ Wj.
We may assume that j = 1. Similarly, we show that W1 ⊂ Vi for some i. Hence
V1 ⊂ W1 ⊂ Vi. This contradicts the assumption Vi 6⊂ Vj for i 6= j unless
V1 = W1. Now we replace V by V2 ∪ . . . ∪ Vk = W2 ∪ . . . ∪Wt and repeat the
argument.

An irreducible closed subset Z of a topological space X is called an irreducible
component if it is not properly contained in any irreducible closed subset. Let V
be a Noetherian topological space and V = ∪iVi, where Vi are irreducible closed
subsets of V with Vi 6⊂ Vj for i 6= j, then each Vi is an irreducible component.
Otherwise Vi is contained properly in some Z, and Z = ∪i(Z ∩ Vi) would imply
that Z ⊂ Vi for some i hence Vi ⊂ Vk. The same argument shows that every
irreducible component of X coincides with one of the Vi’s.

Remark 4.5. Compare this proof with the proof of the theorem on factorization
of integers into prime factors. Irreducible components play the role of prime
factors.

In view of Proposition 4.3, we can apply the previous terminology to affine
algebraic sets V . Thus, we can speak about irreducible affine algebraic k-sets,
irreducible components of V and a decomposition of V into its irreducible compo-
nents. Notice that our topology depends very much on the field k. For example,
an irreducible k-subset of K is the set of zeroes of an irreducible polynomial in
k[T ]. So a point a ∈ K is closed only if a ∈ k. We say that V is geometrically
irreducible if it is irreducible considered as a K-algebraic set.

Recall that a polynomial F (T ) ∈ k[T ] is said to be irreducible if F (T ) =
G(T )P (T ) implies that one of the factors is a constant (since k[T ]∗ = k∗, this
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is equivalent to saying that F (T ) is an irreducible or prime element of the ring
k[T ]).

Lemma 4.6. Every polynomial F ∈ k[T1, . . . , Tn] is a product of irreducible
polynomials which are defined uniquely up to multiplication by a constant.

Proof. This follows from the well-known fact that the ring of polynomials k[T1, . . . , Tn]
is a UFD (a unique factorization domain). The proof can be found in any ad-
vanced text-book of algebra.

Proposition 4.7. Let F ∈ k[T ]. A subset Z ⊂ Kn is an irreducible component
of the affine algebraic set V = V (F ) if and only if Z = V (G) where G is
an irreducible factor of F . In particular, V is irreducible if and only if F is an
irreducible polynomial.

Proof. Let F = F a1
1 . . . F ar

r be a decomposition of F into a product of irreducible
polynomials. Then

V (F ) = V (F1) ∪ . . . ∪ V (Fr)

and it suffices to show that V (Fi) is irreducible for every i = 1, . . . , r. More
generally, we will show that V (F ) is irreducible if F is irreducible. By Proposition
4.2, this follows from the fact that the ideal (F ) is prime. If (F ) is not prime,
then there exist P,G ∈ k[T ] \ (F ) such that PG ∈ (F ). The latter implies that
F |PG. Since F is irreducible, F |P or F |G (this follows easily from Lemma 4.6).
This contradiction proves the assertion.

Let V ⊂ Kn be an irreducible affine algebraic k-set and O(V ) be its coordi-
nate algebra. By Proposition 4.2, O(V ) is a domain, therefore its quotient field
Q(O(V )) is defined. We will denote it by R(V ) and call it the field of rational
functions on V . Its elements are called rational functions on V .

Recall that for every integral domain A its quotient field Q(A) is a field
uniquely determined (up to isomorphisms) by the following two conditions:

(i) there is an injective homomorphism of rings i : A→ Q(A);

(ii) for every injective homomorphism of rings φ : A→ K, where K is a field,
there exists a unique homomorphism φ̄ : Q(A)→ K such that φ̄ ◦ i = φ.

The field Q(A) is constructed as the factor-set A × (A \ {0})/R , where R is
the equivalence relation (a, b) ∼ (a′, b′)⇐⇒ ab′ = a′b. Its elements are denoted
by a

b
and added and multiplied by the rules

a

b
+
a′

b′
=
ab′ + a′b

bb′
,

a

b
· a
′

b′
=
aa′

bb′
.
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The homomorphism i : A → Q(A) is defined by sending a ∈ A to a
1

. Any
homomorphism φ : A → K to a field K extends to a homomorphism φ̄ :
Q(A) → K by sending a

b
to φ(a)

φ(b)
. We will identify the ring A with the subring

i(A) of Q(A). In particular, the field R(V ) will be viewed as an extension
k ⊂ O(V ) ⊂ R(V ). We will denote the field of fractions of the polynomial ring
k[T1, . . . , Tn] by k(T1, . . . , Tn). It is called the field of rational functions in n
variables.

Definition 4.3. A dominant rational k-map from an irreducible affine algebraic
k-set V to an irreducible affine algebraic k-set W is a homomorphism of k-
algebras f : R(W ) → R(V ). A rational map from V to W is a dominant
rational map to a closed irreducible subset of W .

Let us interpret this notion geometrically. Restricting f to O(W ) and com-
posing with the factor map k[T ′1, . . . , T

′
m] → O(W ), we obtain a homomor-

phism k[T ′1, . . . , T
′
m] → R(V ). It is given by rational functions R1, . . . , Rm ∈

R(V ), the images of the Ti’s. Since every G ∈ I(W ) goes to zero, we have
G(R1, . . . , Rm) = 0. Now each Ri can be written as

Ri =
Pi(T1, . . . , Tn) + I(V )

Qi(T1, . . . , Tn) + I(V )
,

where Pi and Qi are elements of k[T1, . . . , Tn] defined up to addition of elements
from I(V ). If a ∈ V does not belong to the set Z = V (Q1)∪ . . .∪V (Qn), then

α(a) = (R1(a), . . . , Rm(a)) ∈ Km

is uniquely defined. Since G(R1(a), . . . , Rm(a)) = 0 for any G ∈ I(W ), α(a) ∈
W . Thus, we see that f defines a map α : V \ Z → W which is denoted by

α : V−→ W.

Notice the difference between the dotted and the solid arrow. A rational map is
not a map in the usual sense because it is defined only on an open subset of V .
Clearly a rational map is a generalization of a regular map of irreducible algebraic
sets. Any homomorphism of k-algebras O(W ) → O(V ) extends uniquely to a
homomorphism of their quotient fields.

Let us see that the image of α is dense in W (this explains the word dom-
inant). Assume it is not. Then there exists a polynomial F 6∈ I(W ) such that
F (R1(a), . . . , Rm(a)) = 0 for any a ∈ V \ Z. Write

f(F ) = F (R1, . . . , Rm) =
P (T1, . . . , Tn)

Q(T1, . . . , Tn)
.
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We have P (T1, . . . , Tn) ≡ 0 on V \ Z. Since V \ Z is dense in the Zariski
topology, P ≡ 0 on V , i.e. P ∈ I(V ). This shows that under the map R(W )→
R(V ), F goes to 0. Since the homomorphism R(W ) → R(V ) is injective (any
homomorphism of fields is injective) this is absurd.

In particular, taking W = A1
k(K), we obtain the interpretation of elements

of the field R(V ) as non-constant rational functions V− → K defined on an
open subset of V (the complement of the set of the zeroes of the denominator).
From this point of view, the homomorphism R(W )→ R(V ) defining a rational
map f : V−→ W can be interpreted as the homomorphism f ∗ defined by the
composition φ 7→ φ ◦ f .

Definition 4.4. A rational map f : V− → W is called birational if the cor-
responding field homomorphism f ∗ : R(W ) → R(V ) is an isomorphism. Two
irreducible affine algebraic sets V and W are said to be birationally isomorphic
if there exists a birational map from V to W .

Clearly, the notion of birational isomorphism is an equivalence relation on the
set of irreducible affine algebraic sets. If f : V−→ W is a birational map, then
there exists a birational map f : W−→ V such that the compositions f ◦ f ′
and f ′ ◦ f are defined on an open subsets U and U ′ of V and W , respectively,
with f ◦ f ′ = id′U , f

′ ◦ f = idU .

Remark 4.8. One defines naturally the category whose objects are irreducible
algebraic k-sets with morphisms defined by rational maps. A birational map is
an isomorphism in this category.

Example 4.9. Let V = A1
k(K) and W = V (T 2

1 + T 2
2 − 1) ⊂ K2. We assume

that char(k) 6= 2. A rational map f : V−→ W is given by a homomorphism
f ∗ : R(W )→ R(V ). Restricting it to O(W ) and composing it with k[T1, T2]→
O(W ), we obtain two rational functions R1(T ) and R2(T ) such that R1(T )2 +
R2(T )2 = 1 (they are the images of the unknowns T1 and T2). In other words,
we want to find “a rational parameterization” of the circle, that is, we want
to express the coordinates (t1, t2) of a point lying on the circle as a rational
function of one parameter. It is easy to do this by passing a line through this
point and the fixed point on the circle, say (1, 0). The slope of this line is the
parameter associated to the point. Explicitly, we write T2 = T (T1−1), plug into
the equation T 2

1 + T 2
2 = 1 and find

T1 =
T 2 − 1

T 2 + 1
, T2 =

−2T

T 2 + 1
.
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Thus, our rational map is given by

T1 7→
T 2 − 1

T 2 + 1
, T2 7→

−2T

T 2 + 1
.

Next note that the obtained map is birational. The inverse map is given by

T 7→ T2

T1 − 1
.

In particular, we see that

R(V (T 2
1 + T 2

2 − 1)) ∼= k(T1).

The next theorem, although sounding as a deep result, is rather useless for
concrete applications.

Theorem 4.10. Assume k is of characteristic 0. Then any irreducible affine
algebraic k-set is birationally isomorphic to an irreducible hypersurface.

Proof. Since R(V ) is a finitely generated field over k, it can be obtained as an
algebraic extension of a purely transcendental extension L = k(t1, . . . , tn) of k.
Since char(k) = 0, R(V ) is a separable extension of L, and the theorem on a
primitive element applies (M. Artin, ”Algebra”, Chapter 14, Theorem 4.1): an
algebraic extension K/L of characteristic zero is generated by one element x ∈
K. Let k[T1, . . . , Tn+1]→ R(V ) be defined by sending Ti to ti for i = 1, . . . , n,
and Tn+1 to x. Let I be the kernel, and φ : A = k[T1, . . . , Tn+1]/I → R(V )
be the corresponding injective homomorphism. Every P (T1, . . . , Tn+1) ∈ I is
mapped to P (t1, . . . , tn, x) = 0. Considering P (x1, . . . , xn, Tn+1) as an element
of L[Tn+1] it must be divisible by the minimal polynomial of x. Hence I =
(F (T1, . . . , Tn, Tn+1)), where F (t1, . . . , tn, Tn+1) is a product of the minimal
polynomial of x and some polynomial in t1, . . . , tn. Since A is isomorphic to
a subring of a field it must be a domain. By definition of the quotient field φ
can be extended to a homomorphism of fields Q(A) → R(V ). Since R(V ) is
generated as a field by elements in the image, φ must be an isomorphism. Thus
R(V ) is isomorphic to Q(k[T1, . . . , Tn+1]/(F )) and we are done.

Remark 4.11. The assumption char(k) = 0 can be replaced by the weaker as-
sumption that k is a perfect field, for example, k is algebraically closed. In this
case one can show that R(V ) is a separable extension of some purely transcen-
dental extension of k.
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Definition 4.5. An irreducible affine algebraic k-set V is said to be k-rational
if R(V ) ∼= k(T1, . . . , Tn) for some n. V is called rational if, viewed as algebraic
K-set, it is K-rational.

Example 4.12. 2. Assume char(k) 6= 2. The previous example shows that the
circle V (T 2

1 +T 2
2 −1) is k-rational for any k. On the other hand, V (T 2

1 +T 2
2 +1)

may not be k-rational, for example, when k = R.
3. An affine algebraic set given by a system of linear equations is always rational
(Prove it!).
4. V (T 2

1 + T 3
2 − 1) is not rational. Unfortunately, we do not have yet sufficient

tools to show this.
5. Let V = V (T 3

1 + . . . + T 3
n − 1) be a cubic hypersurface. It is known that V

is not rational for n = 2 and open question for many years whether V is rational
for n = 4. The negative answer to this problem was given by Herb Clemens and
Phillip Griffiths in 1972. It is known that V is rational for n ≥ 5 however it is
not known whether V (F ) is rational for any irreducible polynomial of degree 3
in n ≥ 5 variables.

An irreducible algebraic set V is said to be k-unirational if its field of rational
functions R(V ) is isomorphic to a subfield of k(T1, . . . , Tn) for some n. It
was an old problem (the Lüroth Problem) whether, for k = C, there exist k-
unirational sets which are not k-rational. The theory of algebraic curves easily
implies that this is impossible if C(V ) is transcendence degree 1 over C. A purely
algebraic proof of this fact is not easy (see P. Cohn, “Algebra”). The theory of
algebraic surfaces developed in the end of the last century by Italian geometers
implies that this is impossible if C(V ) of transcendence degree 2 over C. No
purely algebraic proofs of this fact is known. Only in 1972-73 a first example
of a unirational non-rational set was constructed. In fact, there were given
independently 3 counterexamples (by Clemens-Griffiths, by Artin-Mumford and
Iskovskih-Manin). The example of Clemens-Griffiths is the cubic hypersurface
V (T 3

1 + T 3
2 + T 3

3 + T 3
4 − 1).

Finally we note that we can extend all the previous definitions to the case of
affine algebraic varieties. For example, we say that an affine algebraic variety X
is irreducible if its coordinate algebra O(X) is an integral domain. We leave to
the reader to do all these generalizations.

Problems.

1. Let k be a field of characteristic 6= 2. Find irreducible components of the affine
algebraic k-set defined by the equations T 2

1 +T 2
2 +T 2

3 = 0, T 2
1 −T 2

2 −T 2
3 +1 = 0.
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2. Same for the set defined by the equations T 2
2 − T1T3 = 0, T 2

1 − T 3
2 = 0.

Prove that all irreducible components of this set are birationally isomorphic to
the affine line.

3. Let f : X(K) → Y (K) be the map defined by the formula from Problem 1
of Lecture 3. Show that f is a birational map.

4. Let F (T1, . . . , Tn) = G(T1, . . . , Tn) + H(T1, . . . , Tn), where G is a homoge-
neous polynomial of degree d− 1 and H is a homogeneous polynomial of degree
d. Assuming that F is irreducible, prove that the algebraic set V (F ) is rational.

5. Prove that the affine algebraic sets given by the systems T 3
1 +T 3

2 −1 = 0 and
T 2

1 − T 3
2 /3 + 1/12 = 0 are birationally isomorphic.
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Lecture 5

Projective algebraic varieties

Let A be a commutative ring and An+1 (n ≥ 0) be the Cartesian product
equipped with the natural structure of a free A-module of rank n + 1. A free
submodule M of An+1 of rank 1 is said to be a line in An+1, if M = Ax for
some x = (a0, . . . , an) such that the ideal generated by a0, . . . , an contains 1.
We denote the set of lines in An+1 by Pn(A)′. One can define Pn(A)′ also as
follows. Let

C(A)n = {x = (a0, . . . , an) ∈ An+1 : (a0, . . . , an) = 1}.

Then each line is generated by an element of C(A)n. Two elements x, y ∈ C(A)n
define the same line if and only if x = λy for some invertible λ ∈ A. Thus

Pn(A)′ = C(A)n/A
∗,

is the set of orbits of the group A∗ of invertible elements of A acting on C(A)n
by the formula λ · (a0, . . . , an) = (λa0, . . . , λan). Of course, when A is a field,

C(A)n = An+1 \ {0}, Pn(A)′ = (An+1 \ {0})/A∗.

If M = Ax, where x = (a0, . . . , an) ∈ C(A)n, then (a0, . . . , an) are called the
homogeneous coordinates of the line. In view of the above they are determined
uniquely up to an invertible scalar factor λ ∈ A∗.

Example 5.1. 1. Take A = R. Then P1(R)′ is the set of lines in R2 passing
through the origin. By taking the intersection of the line with the unit circle
we establish a bijective correspondence between P1(R) and the set of points
on the unit circle with the identification of the opposite points. Or choosing a

31
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representative on the upper half circle we obtain a bijective map from P1(R)′ to
the half circle with the two ends identified. This is bijective to a circle. Similarly
we can identify P2(R)′ with the set of points in the upper unit hemisphere such
that the opposite points on the equator are identified. This is homeomorphic
to the unit disk where the opposite points on the boundary are identified. The
obtained topological space is called the real projective plane and is denoted by
RP2.
2. Take A = C. Then P1(C)′ is the set of one-dimensional linear subspaces
of C2. We can choose a unique basis of x ∈ P1(C)′ of the form (1, z) unless
x = (0, z), z ∈ C\{0}, and Cx = C(0, 1). In this way we obtain a bijective map
from P1(C)′ to c ∪ {∞}, the extended complex plane. Using the stereographic
projection, we can identify the latter set with a 2-dimensional sphere. The com-
plex coordinates make it into a compact complex manifold of dimension 1, the
Riemann sphere CP1.

Any homomorphism of rings φ : A → B extends naturally to the map φ̃ =
φ⊕n : An+1 → Bn+1. If x = (a0, . . . , an) ∈ C(A)n, then one can write 1 =
a0b0 + . . . + anbn for some bi ∈ A. Applying φ, we obtain 1 = φ(a0)φ(b0) +
. . . + φ(an)φ(bn). This shows that φ̃(x) ∈ C(B)n. This defines a map φ̃ :
Cn(A)→ Cn(B). Also a = λb⇐⇒ φ̃(a) = φ(λ)φ̃(b). Hence φ̃ induces the map
of equivalence classes

′Pn(φ) : Pn(A)′ → Pn(B)′.

For our future needs we would like to enlarge the set Pn(A)′ a little further
to define the set Pn(A). We will not be adding anything if A is a field.

Let M = Ax ⊂ An+1, x = (a0, . . . , an) ∈ Cn(A), be a line in An+1. Choose
b0, . . . , bn ∈ A such that

∑
i biai = 1. Then the homomorphism φ : An+1 →M

defined by (α0, . . . , αn) 7→ (
∑

i αibi)x is surjective, and its restriction to M
is the identity. Since for any m ∈ An+1 we have m − φ(m) ∈ Ker(φ), and
M ∩Ker(φ) = {0}, we see that

An+1 ∼= M ⊕Ker(φ).

So each line is a direct summand of An+1. Not each direct summand of An+1 is
necessarily free. So we can enlarge the set Pn(A)′ by adding to it not necessarily
free direct summands of An+1 which become free of rank 1 after “localizing” the
ring. Let us explain the latter.

Let S be a non-empty multiplicatively closed subset of A containing 1. One
defines the localization MS of an A-module M in the similar way as one defines
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the field of fractions: it is the set of equivalence classes of pairs (m, s) ∈ M ×
S with the equivalence relation: (m, s) ≡ (m′, s′) ⇐⇒ ∃s′′ ∈ S such that
s′′(s′m− sm′) = 0. The equivalence class of a pair (m, s) is denoted by m

s
. The

equivalence classes can be added by the natural rule

m

s
+
m′

s′
=
s′m+ sm′

ss′

(one verifies that this definition is independent of a choice of a representative).
If M = A, one can also multiply the fractions by the rule

a

s
· a
′

s′
=
aa′

ss
.

Thus AS becomes a ring such that the natural map A → AS, a 7→ a1, is a
homomorphism of rings. The rule

a

s
· m
s′

=
am

ss′
.

equips MS with the structure of an AS-module. Note that MS = {0} if 0 ∈ S.
Observe also that there is a natural isomorphism of AS-modules

M ⊗A AS →MS,m⊗
a

s
7→ am

s
,

where AS is equipped with the structure of an A-module by means of the canon-
ical homomorphism A→ AS.

Example 5.2. 3. Take S to be the set of elements of A which are not zero-
divisors. This is obviously a multiplicatively closed subset of A. The localized
ring AS is called the total ring of fractions. If A is a domain, S = A \ {0}, and
we get the field of fractions.

4. Let p be a prime ideal in A. By definition of a prime ideal, the set A \ p is
multiplicatively closed. The localized ring AA\p is denoted by Ap and is called the
localization of A at a prime ideal p. For example, take A = Z and p = (p), where p
is a prime number. The ring Z(p) is isomorphic to the subring of Q which consists of
fractions such that the denominator is not divisible by p.

As we saw earlier any line L = Ax ∈ Pn(A)′ is a direct summand of the free
module An+1. In general not every direct summand of a free module is free.

Definition 5.1. A projective module over A is a finitely generated module P
over A satisfying one of the following equivalent properties:
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(i) P is isomorphic to a direct summand of a free module;

(ii) For every surjective homomorphism φ : M → P of A-modules there is a
homomorphism s : P →M such that φ ◦ s = idP (a section).

Let us prove the equivalence.

(ii)⇒ (i) Let An → P be the surjective homomorphism corresponding to a
choice of generators of P . By property(i) there is a homomorphism s : P → An

such that φ ◦ s = idP . Let N = Ker(φ). Consider the homomorphism (i, s) :
N ⊕ P → An, where i is the identity map N → An. It has the inverse given by
m 7→ (m− φ(m), φ(m))

(i)⇒ (ii) Assume P⊕N ∼= An. Without loss of generality we may assume that
P,N are submodules of An. Let φ : M → P be a surjective homomorphism of
A-modules. We extend it to a surjective homomorphism (φ, idN) : M⊕N → An.
If we prove property (ii) for free modules, we will be done since the restriction
of the corresponding section to P is a section of φ. So let φ : M → An be a
surjective homomorphism. Let m1, . . . ,mn be some pre-images of the elements
of a basis (ξ1, . . . , ξn) of An. The homomorphism An →M defined by ξ 7→ mi

is well-defined and is a section.

We saw in the previous proof that a free finitely generated module is projec-
tive. In general, the converse is not true. For example, let K/Q be a finite field
extension, and A be the ring of integers of K, i.e. the subring of elements of K
which satisfy a monic equation with coefficients in Z. Then any ideal in A is a
projective module but not necessarily a principal ideal.

An important class of rings A such that any projective module over A is free
is the class of local rings.

A commutative ring is called local if it has a unique maximal ideal. For
example, any field is local. The ring of power series k[[T1, . . . , Tn]] is local (the
maximal ideal is the set of infinite formal series with zero constant term).

Lemma 5.3. Let A be a local ring and m be its unique maximal ideal. Then
A \m = A∗ (the set of invertible elements in A).

Proof. Let x ∈ A \m. Then the principal ideal (x) is contained in some proper
maximal ideal unless (x) = A which is equivalent to x ∈ A∗. Since A has only
one maximal ideal and it does not contain x, we see that (x) = A.

Proposition 5.4. A projective module over a local ring is free.
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Proof. Let Matn(A) be the ring of n×n matrices with coefficients in a commu-
tative ring A. For any ideal I in A we have a natural surjective homomorphism
of rings Matn(A) → Matn(A/I), X 7→ X̄, which obtained by replacing each
entry of a matrix X with its residue modulo I. Now let A be a local ring, I = m
be its unique maximal ideal, and k = A/m (the residue field of A). Suppose
X ∈ Matn(A) is such that X̄ is an invertible matrix in Matn(k). I claim that
X is invertible in Matn(A). In fact, let Ȳ · X̄ = In for some Y ∈ Matn(A).
The matrix Y X has diagonal elements congruent to 1 modulo m and all off-
diagonal elements belonging to m. By Lemma 5.3, the diagonal elements of
Y X are invertible in A. It is easy to see, that using elementary row trans-
formations which do not involve switching the rows we can reduce Y X to the
identity matrix. This shows that there exists a matrix S ∈ Matn(A) such that
S(Y X) = (SY )X = In. Similarly, using elementary column transformations,
we show that X has the right inverse, and hence is invertible.

Let M be a A-module and I ⊂ A an ideal. Let IM denote the submodule
of M generated by all products am, where a ∈ I. The quotient module M =
M/IM is a A/I-module via the scalar multiplication (a+ I)(m+ IM) = am+
IM . There is an isomorphism of A/I-modules M/IM ∼= M ⊗M ⊗A (A/I),
where A/I is considered as an A-algebra via the natural homomorphism A →
A/I. It is easy to check the following property.

(M ⊕N)/I(M ⊕N) ∼= (M/IM)⊕ (N/IN). (5.1)

Now let M be a projective module over a local ring A. Replacing M by an
isomorphic module we may assume that M ⊕ N = An for some submodule N
of a free A-module An. Let m be the maximal ideal of A. Let (m1, . . . ,ms)
be elements in M such that (m1 + I, . . . ,ms + I) is a basis of the vector space
M/mM over k = A/m. Similarly, choose (n1, . . . , nt) in N . By property (5.1)
the residues of m1, . . . ,mt, n1, . . . , ns form a basis of kn. Consider the map
f : An →M ⊕N defined by sending the unit vector ei ∈ An to mi if i ≤ t and
to ni if i ≥ t+ 1. Let S be its matrix with respect to the unit bases (e1, . . . , en)
in An. Then the image of S in Matn(k) is an invertible matrix. Therefore S is
an invertible matrix. Thus f is an isomorphism of A-modules. The restriction of
f to the free submodule Ae1 + . . .+ Aet is an isomorphism At ∼= M .

Corollary 5.5. Let P be a projective module over a commutative ring A. For
any maximal ideal m in A the localization Pm is a free module over Am.

Proof. This follows from the following lemma which we leave to the reader to
prove.
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Lemma 5.6. Let P be a projective module over A. For any A-algebra B the
tensor product P ⊗A B is a projective B-module.

Definition 5.2. A projective module P over A has rank r if for each maximal
ideal m the module Pm is free of rank r.

Remark 5.7. Note that, in general, a projective module has no rank. For example,
let A = A1 × A2 be the direct sum of rings. The module Ak1 × An2 (with scalar
multiplication (a1, a2) · (m1,m2) = (a1m1, a2m2)) is projective but has no rank
if k 6= n. If A is a domain, then the homomorphism A → Am defines an
isomorphism of the fields of fractions Q(A) ∼= Q(Am). This easily implies that
the rank of P can be defined as the dimension of the vector space P ⊗A Q(A).

We state without proof the converse of the previous Corollary (see, for ex-
ample, N. Bourbaki, “Commutative Algebra”, Chapter 2, §5).

Proposition 5.8. Let M be a module over A such that for each maximal ideal
m the module Mm is free. Then M is a projective module.

Now we are ready to give the definition of Pn(A).

Definition 5.3. Let A be any commutative ring. The projective n-space over A
is the set Pn(A) of projective A-modules of rank 1 which are direct summands
of An+1.

We have seen that
Pn(A)′ ⊂ Pn(A).

The difference is the set of non-free projective modules of rank 1 which are direct
summands of An+1.

A projective submodule of rank 1 of An+1 may not be a direct summand. For
example, a proper principal ideal (x) ⊂ A is not a direct summand in A. A free
submodule M = A(a0, . . . , an) of An+1 of rank 1 is a direct summand if and
only if the ideal generated by a0, . . . , an is equal to A, i.e. M ∈ Pn(A)′.

This follows from the following characterization of direct summands of An+1.
A submodule M of An+1 is a direct summand if and only if the corresponding
homomorphism of the dual modules

An+1 ∼= HomA(An+1, A)→M∗ = HomA(M,A)

is surjective. Sometimes Pn(A) is defined in “dual terms” as the set of projective
modules of rank 1 together with a surjective homomorphism An+1 →M . When
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A is a field this is a familiar duality between lines in a vector space V and
hyperplanes in the dual vector space V ∗.

A set {fi}i∈I of elements from A is called a covering set if it generates
the unit ideal. Every covering set contains a finite covering subset. In fact if
1 =

∑
i aifi for some ai ∈ A, we choose those fi which occur in this sum with

non-zero coefficient. For any f ∈ A we set Af = AS, where S consists of powers
of f .

Lemma 5.9. Let M be a projective module of rank r over a ring A. There
exists a finite covering set {fi}i∈I of elements in A such that for any i ∈ I the
localization Mfi is a free Afi-module of rank r.

Proof. We know that for any maximal ideal m in A the localization Mm is a
free module of rank r. Let x1, . . . , xr be its generators. Multiplying them by
invertible elements in Am, we may assume that the generators belong to A. Let
φ : Ar →M be the homomorphism defined by these generators. We know that
the corresponding homomorphism φm : Arm → Mm of localizations is bijective.
I claim that there exists fm 6∈ m such the homomorphism φfm : Arfm → Mfm is
bijective. Let K = Ker(φ) and C = Coker(φ). Then Ker(φm) = Km = {0}.
Since K is a finitely generated module and Km = 0, there exists g 6∈ m such
gK = {0} and hence Kg = 0. Similarly, we find an element h 6∈ m such
that Ch = {0}. Now if we take fm = gh, then Kf and Cfm = {0}, hence
φfm : Arfm → Mfm is bijective. Since the set of elements fm is not contained in
any maximal ideal, it must generate the unit ideal, hence it is a covering set. It
remains to select a finite covering subset of the set {fm} .

Using Lemma 5.9 we may view every projective submodule M of An+1

of rank 1 as a ‘local line’ : we can find a finite covering set {fi}i∈I such
that Mfi is a line in (Afi)

n+1. We call such a family a trivializing family for
M . If {gj}j∈J is another trivializing family for M we may consider the family
{figj}(i,j)∈I×J . It is a covering family as one sees by multiplying the two relations
1 =

∑
i aifi, 1 =

∑
j bjgj. Note that for any f, g ∈ A there is a natural homo-

morphism of rings Af → Afg, a/f
n → agn/(fg)n inducing an isomorphism of

Afg-modules Mf⊗Af
Afg ∼= Mfg. This shows that {figj}(i,j)∈I×J is a trivializing

family. Moreover, if Mfi = xiAfi , xi ∈ An+1
fi

and Mgj = yjAgj , yj ∈ An+1
gj

, then

x′i = αijy
′
j for some αij ∈ Afigj (5.2)

where the prime indicates the image in Afg.
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Now let us go back to algebraic equations. Fix a field k. For any k-algebra
K we have the set Pn(K). It can be viewed as a natural extension (in n + 1
different ways) of the set An

k(K) = Kn. In fact, for every k-algebra K we have
the injective maps

αi : An
k(K) = Kn → Pnk(K),

(a1, . . . , an)→ (a1, . . . , ai, 1, ai+1, . . . , an), i = 0, . . . , n.

Assume that K is a field. Take, for example, i = 0. We see that

Pn(K) \Kn = {(a0, a1, . . . , an)A ∈ Pn(K) : a0 = 0}.

It is naturally bijectively equivalent to Pn−1(K). Thus we have

Pn(K) = An
k(K)

∐
Pn−1(K).

By now, I am sure you understand what I mean when I say “naturally”. The
bijections we establish for different K are compatible with respect to the maps
Pn(K) → Pn(K ′) and Kn → K ′n corresponding to homomorphisms K → K ′

of k-algebras.

Example 5.10. The Riemann sphere

P1(C) = C ∪ {P0(C)}.

The real projective plane

P2(R) = R2 ∪ P1(R).

We want to extend the notion of an affine algebraic variety by considering
solutions of algebraic equations which are taken from Pn(K). Assume first that
L ∈ Pn(K) is a global line, i.e. a free submodule of Kn+1. Let (a0, . . . , an) be its
generator. For any F ∈ k[T0, . . . , Tn] it makes sense to say that F (a0, . . . , an) =
0. However, it does not make sense, in general, to say that F (L) = 0 because
a different choice of a generator may give F (a0, . . . , an) 6= 0. However, we can
solve this problem by restricting ourselves only with polynomials satisfying

F (λT0, . . . , λTn) = λdF (T0, . . . , Tn), ∀λ ∈ K∗.

To have this property for all possible K, we require that F be a homogeneous
polynomial.
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Definition 5.4. A polynomial F (T0, . . . , Tn) ∈ k[T0, . . . , Tn] is called homoge-
neous of degree d if

F (T0, . . . , Tn) =
∑
i0,...,in

ai0≥0,...,in≥0T
i0
0 · · ·T inn =

∑
i

aiT
i

with |i| = d for all i. Here we use the vector notation for polynomials:

i = (i0, . . . , in) ∈ Nn+1,Ti = T i00 · · ·T inn , |i| = i0 + . . .+ in.

By definition the constant polynomial 0 is homogeneous of any degree.

Equivalently, F is homogeneous of degree d if the following identity in the
ring k[T0, . . . , Tn, t] holds:

F (tT0, . . . , tTn) = tdF (T0, . . . , Tn).

Let k[T ]d denote the set of all homogeneous polynomials of degree d. This
is a vector subspace over k in k[T ] and

k[T ] = ⊕d≥0k[T ]d.

Indeed every polynomial can be written uniquely as a linear combination of mono-
mials Ti which are homogeneous of degree |i|. We write degF = d if F is of
degree d.

Let F be homogeneous polynomial in T0, . . . , Tn. For any k-algebra K and
x ∈ Kn+1

F (x) = 0⇐⇒ F (λx) = 0 for any λ ∈ K∗.
Thus if M = Kx ⊂ Kn+1 is a line in Kn+1, we may say that F (M) = 0 if
F (x) = 0, and this definition is independent of the choice of a generator of M .
Now if M is a local line and Mfi = xiKfi ⊂ Kn+1

fi
for some trivializing family

{fi}i∈I , we say that F (M) = 0 if F (xi) = 0 for all i ∈ I. This definition is
independent of the choice of a trivializing family follows from (2) above and the
following.

Lemma 5.11. Let {fi}i∈I be a covering family in a ring A and let a ∈ A.
Assume that the image of a in each Afi is equal to 0. Then a = 0.

Proof. By definition of Afi , we have a/1 = 0 in Afi ⇐⇒ fni ai = 0 for some
n ≥ 0. Obviously, we choose n to be the same for all i ∈ I. Since 1 =

∑
i∈I aifi

for some ai ∈ A, after raising the both sides in sufficient high power, we obtain
1 =

∑
i∈I bif

n
i for some bi ∈ A. Then a =

∑
i∈I bif

n
i a = 0.
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Now if S ⊂ k[T0, . . . , Tn] consists of homogeneous polynomials and {F =
0}F∈S is the corresponding system of algebraic equations (we call it a homoge-
neous system), we can set for any k-algebra K

PSol(S;K) = {M ∈ Pn(K) : F (M) = 0 for any F ∈ S},

PSol(S;K)′ = {M ∈ Pn(K)′ : F (M) = 0 for any F ∈ S}.

Definition 5.5. A projective algebraic variety over a field k is a correspondence

X : K → PSol(S;K) ⊂ Pn(K)

where S is a homogeneous system of algebraic equations over k. We say that X
is a subvariety of Y if X(K) is a subset of Y (K) for all K.

Now we explain the process of a homogenization of an ideal in a polynomial
ring which allows us to extend an affine algebraic variety to a projective one.

Let F (Z1, . . . , Zn) ∈ k[Z1, . . . , Zn] (this time we have to change the notation
of variables). We write Zi = Ti/T0 and plug it in F . After reducing to common
denominator, we get

F (T1/T0, . . . , Tn/T0) = T−d0 G(T0, . . . , Tn),

where G ∈ k[T0, . . . , Tn] is a homogeneous polynomial of degree d equal to the
highest degree of monomials entering into F .

The polynomial

G(T0, . . . , Tn) = T d0F (T1/T0, . . . , Tn/T0)

is said to be the homogenization of F. For example, the polynomial T 2
2 T0 +T 3

1 +
T1T

2
0 + T 3

0 is equal to the homogenization of the polynomial Z2
2 +Z3

1 +Z1 + 1.
Let I be an ideal in k[Z1, . . . , Zn]. We define the homogenization of I as

the ideal Ihom in k[T0, . . . , Tn] generated by homogenizations of elements of I.
It is easy to see that if I = (G) is principal, then Ihom = (F ), where F is the
homogenization of G. However, in general it is not true that Ihom is generated
by the homogenizations of generators of I (see Problem 6 below).

Recalling the injective map α0 : An
k → Pnk defined in the beginning of this

lecture, we see that it sends an affine algebraic subvariety X defined by an ideal
I to the projective variety defined by the homogenization Ihom, which is said to
be the projective closure of X.
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Example 5.12. Let X be given by aT0 + bT1 + cT2 = 0, a projective subvariety
of the projective plane P2

k. It is equal to the projective closure of the line L ⊂ A2
k

given by the equation bZ1 + cZ2 + a = 0. For every K the set X(K) has a
unique point P not in the image of L(K). Its homogeneous coordinates are
(0, c,−b). Thus, X has to be viewed as L ∪ {P}. Of course, there are many
ways to obtain a projective variety as a projective closure of an affine variety. To
see this, it is sufficient to replace the map α0 in the above constructions by the
maps αi, i 6= 0.

Let {F (T ) = 0}F∈S be a homogeneous system. We denote by (S) the ideal
in k[T ] generated by the polynomials F ∈ S. It is easy to see that this ideal has
the following property

(S) = ⊕d≥0((S) ∩ k[T ]d).

In other words, each polynomial F ∈ (S) can be written uniquely as a linear
combination of homogeneous polynomials from (S).

Definition 5.6. An ideal I ⊂ k[T ] is said to be homogeneous if one of the
following conditions is satisfied:

(i) I is generated by homogeneous polynomials;

(ii) I = ⊕d≥0(I ∩ k[T ]d).

Let us show the equivalence of these two properties. If (i) holds, then every
F ∈ I can be written as

∑
iQiFi, where Fi is a set of homogeneous generators.

Writing each Qi as a sum of homogeneous polynomials, we see that F is a linear
combination of homogeneous polynomials from I. This proves (ii). Assume (ii)
holds. Let G1, . . . , Gr be a system of generators of I. Writing each Gi as a
sum of homogeneous polynomials Gij from I, we verify that the set {Gij} is a
system of homogeneous generators of I. This shows (i).

We know that in the affine case the ideal I(X) determines uniquely an affine
algebraic variety X. This is not true anymore in the projective case.

Proposition 5.13. Let {F (T ) = 0}F∈S be a homogeneous system of algebraic
equations over a field k. Then the following properties are equivalent:

(i) PSol(S;K)′ = ∅ for some algebraically closed field K;

(ii) (S) ⊃ k[T ]≥r :=
∑

d≥r k[T ]d for some r ≥ 0;

(iii) for all k-algebras K, PSol(S;K) = ∅.
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Proof. (i) =⇒ (ii) Let K be an algebraically closed field containing k. We can
write

F (T0, . . . , Tn) = T d0F (1, T1/T0, . . . , Tn/T0),

where d = degF . Substituting Zi = Ti/T0, we see that the polynomials
GF (Z1, . . . , Zn) = F (1, Z1, . . . , Zn) do not have common roots (otherwise, its
common root (a1, . . . , an) will define an element (1, a1, . . . , an) ∈ PSol(S;K)′).
Thus, by Nullstellensatz, ({GF}F∈S) = (1), i.e.

1 =
∑
F∈S

QFGF (Z1, . . . , Zn)

for some QF ∈ k[Z1, . . . , Zn]. Substituting back Zi = Ti/T0 and reducing to

common denominator, we find that there exists m(0) ≥ 0 such that T
m(0)
0 ∈ (S).

Similarly, we show that for any i > 1, T
m(i)
i ∈ (S) for some m(i) ≥ 0. Let

m = max{m(0), . . . ,m(n)}. Then every monomial in Ti of degree greater or
equal to r = m(n+ 1) contains some Tm(i) as a factor. Hence it belongs to the
ideal (S). This proves that (S) ⊃ k[T ]≥r.

(ii) =⇒ (iii) If (S) ⊃ k[T ]≥r for some r > 0, then all T ri belong to (S).
Thus for every M = K(a0, . . . , an) ∈ PSol(S;K)′ we must have ari = 0. Since
(a0, . . . , an) ∈ Cn(K) we can find b0, . . . , bn ∈ K such that 1 = b0a0+. . .+bnan.
This easily implies that

1 = (b0a0 + . . .+ bnan)r(n+1) = 0.

This contradiction shows that PSol(S;K)′ = ∅ for any k-algebra K. From this
we can deduce that PSol(S;K) = ∅ for all K. In fact, every M ∈ PSol(S;K)
defines Mf ∈ PSol(S;Kf )

′ for some f ∈ Kf .
(iii) =⇒ (i) Obvious.

Note that k[T ]≥r is an ideal in k[T ] which is equal to the power mr
+ where

m+ = k[T ]≥1 = (T0, . . . , Tn).

A homogeneous ideal I ⊂ k[T ] containing some power of m+ is said to be
irrelevant. The previous proposition explains this definition.

For every homogeneous ideal I in k[T ] we define the projective algebraic
variety PV (I) as a correspondence K → PSol(I,K). We define the saturation
of I by

Isat = {F ∈ k[T ] : GF ∈ I for all G ∈ ms
+ for some s ≥ 0}.
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Clearly Isat is a homogeneous ideal in k[T ] containing the ideal I (Check it !) .

Proposition 5.14. Two homogeneous systems S and S ′ define the same pro-
jective variety if and only if (S)sat = (S ′)sat.

Proof. Let us show first that for any k-algebra K, the ideals (S) and (S)sat have
the same set of zeroes in Pnk(K). It suffices to show that they have the same set
of zeroes in every Pnk(K)′. Clearly every zero of (S)sat is a zero of (S). Assume
that a = (a0, . . . , an) ∈ Pnk(K)′ is a zero of (S) but not of (S)sat. Then there
exists a polynomial F ∈ (S)sat which does not vanish at a. By definition, there
exists s ≥ 0 such that TiF ∈ (S) for all monomials Ti of degree at least s. This
implies that Ti(a)F (a) = 0. By definition of homogeneous coordinates, one can
write 1 = a0b0 + . . .+bnan for some bi. Raising this equality into the s-th power,
we obtain that Ti(a) generate the unit ideal. Thus we can write 1 =

∑
ciT

i for
some ci ∈ A, all zeros except finite many. This implies F (a) =

∑
ciT

iF (a) = 0.
Thus we may assume that (S) = (S)sat, (S ′) = (S ′)sat. Take (t0, . . . , tn) ∈

Sol(S ′, k[T ]/(S ′)), where ti = Ti + (S ′). For every F = F (T0, . . . , Tn) ∈ (S ′),
we consider the polynomial F ′ = F (1, Z1, . . . , Zn) ∈ k[Z1, . . . , Zn], where
Zi = Ti/T0. Let (S ′)0 be the ideal in k[Z] generated by all polynomials
F ′ where F ∈ (S ′). Then (1, z1, . . . , zn) ∈ Sol(S ′; k[Z]/(S ′)0) where zi =
Zi mod (S ′)0. By assumption, (1, z1, . . . , zn) ∈ Sol(S; k[Z]/(S ′)0). This shows
that G(1, Z1, . . . , Zn) ∈ (S ′)0 for each homogeneous generator of (S), i.e.

G(1, Z1, . . . , Zn) =
∑
i

QiFi(1, Z1, . . . , Zn)

for some Qi ∈ k[Z] and homogeneous generators Fi of (S ′). Plugging in Zi =
Ti/T0 and reducing to the common denominator, we obtain

T
d(0)
0 G(T0, . . . , Tn) ∈ (S ′)

for some d(0). Similarly, we obtain that T d(i)G ∈ (S ′) for some d(i), i = 1, . . . , n.
This easily implies that ms

+G ∈ (S ′) for some large enough s (cf. the proof of
Proposition 5.3) . Hence, G ∈ (S ′) and (S) ⊂ (S ′). Similarly, we obtain the
opposite inclusion.

Definition 5.7. A homogeneous ideal I ⊂ k[T ] is said to be saturated if I = Isat.

Corollary 5.15. The map I → PV (I) is a bijection between the set of saturated
homogeneous ideals in k[T] and the set of projective algebraic subvarieties of Pnk .
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In future we will always assume that a projective variety X is given by a
system of equations S such that the ideal (S) is saturated. Then I = (S) is
defined uniquely and is called the homogeneous ideal of X and is denoted by
I(X). The corresponding factor-algebra k[T ]/I(X) is denoted by k[X] and is
called the projective coordinate algebra of X.

The notion of a projective algebraic k-set is defined similarly to the notion
of an affine algebraic k-set. We fix an algebraically closed extension K of k
and consider subsets V ⊂ Pn(K) of the form PSol(S;K), where X is a system
of homogeneous equations in n-variables with coefficients in k. We define the
Zariski k-topology in Pn(K) by choosing closed sets to be projective algebraic
k-sets. We leave the verification of the axioms to the reader.

Problems.

1*. Show that Pn(k[T1, . . . , Tn]) = Pn(k[T1, . . . , Tn])′, where k is a field.

2. Let A = Z/(6). Show that A has two maximal ideals m with the corresponding
localizations Am isomorphic to Z/(2) and Z/(3). Show that a projective A-
modules of rank 1 is isomorphic to A.

3*. Let A = C[T1, T2]/(T 2
1 − T2(T2− 1)(T2− 2)), t1 and t2 be the cosets of the

unknowns T1 and T2. Show that the ideal (t1, t2) is a projective A-module of
rank 1 but not free.

4. Let I ⊂ k[T ] be a homogeneous ideal such that I ⊃ ms
+ for some s. Prove

that Isat = k[T ]. Deduce from this another proof of Proposition 5.13.

5. Find Isat, where I = (T 2
0 , T0T1) ⊂ k[T0, T1].

6. Find the projective closure in P3
k of an affine variety in A3

k given by the
equations Z2 − Z2

1 = 0, Z3 − Z3
1 = 0.

7. Let F ∈ k[T0, . . . , Tn] be a homogeneous polynomial free of multiple factors.
Show that its set of solutions in Pn(K), where K is an algebraically closed
extension of k, is irreducible in the Zariski topology if and only F is an irreducible
polynomial.



Lecture 6

Bézout theorem and a group law
on a plane cubic curve

We begin with an example. Consider two ”concentric circles”:

C : Z2
1 + Z2

2 = 1, C ′ : Z2
1 + Z2

2 = 4.

Obviously, they have no common points in the affine plane A2(K) no matter in
which algebra K we consider our points. However, they do have common points
”at infinity”. The precise meaning of this is the following. Let

C̄ : T 2
1 + T 2

2 − T 2
0 = 0, C̄ ′ : T 2

1 + T 2
2 − 4T 2

0 = 0

be the projective closures of these conics in the projective plane P2
k, obtained by

the homogenization of the corresponding polynomials. Assume that
√
−1 ∈ K.

Then the points (one point if K is of characteristic 2) (1,±
√
−1, 0) are the

common points of C̄(K) and C̄(K)′. In fact, the homogeneous ideal generated
by the polynomials T 2

1 + T 2
2 − T 2

0 and T 2
1 + T 2

2 − 4T 2
0 defining the intersection

is equal to the ideal generated by the polynomials T 2
1 + T 2

2 − T 2
0 and T 2

0 . The
same points are the common points of the line L : T0 = 0 and the conic C̄, but
in our case, it is natural to consider the same points with multiplicity 2 (because
of T 2

0 instead of T0). Thus the two conics have in some sense 4 common points.
Bézout’s theorem asserts that any two projective subvarieties of P2

k given by an
irreducible homogeneous equation of degree m and n, respectively, have mn
common points (counting with appropriate multiplicities) in P2

k(K) for every
algebraically closed field K containing k. The proof of this theorem which we
are giving here is based on the notion of the resultant (or the eliminant) of two
polynomials.

45
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Theorem 6.1. There exists a homogeneous polynomial

Rn,m ∈ Z[A0, . . . , An, B0, . . . , Bm]

of degree m+ n satisfying the following property:

The system of algebraic equations in one unknown over a field k :

P (Z) = a0Z
n + . . .+ an = 0, Q(Z) = b0Z

m + . . .+ bm = 0

has a solution in a field extension K of k if and only if (a0, . . . , an, b0, . . . , bm)
is a k−-solution of the equation

Rn,m = 0.

Proof. Define Rm,n to be equal to the following determinant of order m+n:
A0 . . . An 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 A0 . . . An
B0 . . . Bm 0 . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 B0 . . . Bm


where the first m rows are occupied with the string (A0, . . . , An) and zeroes,
and the remaining n rows are occupied with the string (B0, . . . , Bm) and zeroes.
Assume α ∈ K is a common solution of two polynomials P (Z) and Q(Z). Write

P (Z) = (Z − α)P1(Z), Q(Z) = (Z − α)Q1(Z)

where P1(Z), Q1(Z) ∈ K[Z] of degree n−1 and m−1, respectively. Multiplying
P1(Z) by Q1(Z), and Q(Z) by P1(Z), we obtain

P (Z)Q1(Z)−Q(Z)P1(Z) = 0. (6.1)

This shows that the coefficients of Q1(Z) and P1(Z) (altogether we have n+m
of them) satisfy a system of n + m linear equations. The coefficient matrix of
this system can be easily computed, and we find it to be equal to the transpose
of the matrix 

a0 . . . an 0 . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 a0 . . . an
−b0 . . . −bm 0 . . . . . .
. . . . . . . . . . . . . . . . . .
0 . . . 0 −b0 . . . −bm

 .
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A solution can be found if and only if its determinant is equal to zero.
Obviously, this determinant is equal (up to a sign) to the value of Rn,m at
(a0, . . . , an, b0, . . . , bm). Conversely, assume that the above determinant van-
ishes. Then we find a polynomial P1(Z) of degree ≤ n − 1 and a polynomial
Q1(Z) of degree ≤ m−1 satisfying (1). Both of them have coefficients in k. Let
α be a root of P (Z) in some extension K of k. Then α is a root of Q(Z)P1(Z).
This implies that Z − α divides Q(Z) or P1(Z). If it divides Q(Z), we found
a common root of P (Z) and Q(Z). If it divides P1(Z), we replace P1(Z) with
P1(Z)/(Z − α) and repeat the argument. Since P1(Z) is of degree less than n,
we finally find a common root of P (Z) and Q(Z).

The polynomial Rn,m is called the resultant of order (n,m). For any two
polynomials P (Z) = a0Z

n + . . .+ an and Q(Z) = b0Z
m + . . .+ bm the value of

Rn,m at (a0, . . . , an, b0, . . . , bm) is called the resultant of P (Z) and Q(Z), and
is denoted by Rn,m(P,Q).

A projective algebraic subvariety X of P2
k given by an equation: F (T0, T1, T2) =

0, where F 6= 0 is a homogeneous polynomial of degree d will be called a plane
projective curve of degree d. If d = 1, we call it a line, if d = 2, we call it a plane
conic, plane projective cubic, plane quartic, plane quintic, plane sextic and so on.
We say that X is irreducible if its equation is given by an irreducible polynomial.

Theorem 6.2. (Bézout). Let

F (T0, T1, T2) = 0, G(T0, T1, T2) = 0

be two different plane irreducible projective curves of degree n and m, respec-
tively, over a field k. For any algebraically closed field K containing k, the system
F = 0, G = 0 has exactly mn solutions in P2(K) counted with appropriate mul-
tiplicities.

Proof. Since we are interested in solutions in an algebraically closed field K, we
may replace k by its algebraic closure to assume that k is algebraically closed. In
particular k is an infinite set. We shall deduce later from the theory of dimension
of algebraic varieties that there are only finitely many K-solutions of F = G = 0.
Thus we can always find a line T0 + bT1 + cT2 = 0 with coefficients in k that
has no K-solutions of F = G = 0. This is where we use the assumption that
k is infinite. Also choose a different line aT0 + T1 + dT2 = 0 with a 6= b such
that for any λ, µ ∈ K the line (λ + µa)T0 + (λb + µ)T1 + (λc + µ)T2 = 0 has
at most one solution of F = G = 0 in K. The set of triples (α, β, γ) such that
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the line αT0 + βT1 + γT2 = 0 contains a given point (resp. two distinct points)
is a two-dimensional (resp. one-dimensional) linear subspace of k3. Thus the set
of lines αT0 + βT1 + γT2 = 0 containing at least two solutions of F = G = 0
is a finite set. Thus we can always choose a line in k3 containing (1, b, c) and
some other vector (a, 1, d) such that it does not belong to this set. Making the
invertible change of variables

T0 → T0 + bT1 + cT2, T1 → aT0 + T1 + dT2, T2 → T2

we may assume that for every solution (a0, a1, a2) of F = G = 0 we have a0 6= 0,
and also that no line of the form αT0 +βT1 = 0 contains more than one solution
of F = G = 0 in K. Write

F = a0T
n
2 + . . .+ an, G = b0T

m
2 + . . .+ am,

where ai, bi ∈ k[T0, T1]i. Obviously, an, bm 6= 0, since otherwise T2 is a factor of
F or G. Let

R(A0, . . . , An, B0, . . . , Bm)

be the resultant of order (n,m). Plug ai in Ai, and bj in Bj, and let

R̄ = R(a0, . . . , an, b0, . . . , bm)

be the corresponding homogeneous polynomial in T0, T1. It is easy to see, using
the definition of the determinant, that R̄ is a homogeneous polynomial of degree
mn. It is not zero, since otherwise, by the previous Lemma, for every (β0, β1)
the polynomials F (β0, β1, T2) and G(β0, β1, T2) have a common root in K. This
shows that P2(K) contains infinitely many solutions of the equations F = G = 0,
which is impossible as we have explained earlier. Thus we may assume that
R̄ 6= 0. Dehomogenizing it, we obtain:

R̄ = T nm0 R̄′(T1/T0)

where R̄′ is a polynomial of degree ≤ nm in the unknown Z = T1/T0. Assume
first that the degree of R̄′ is exactly mn. Let α1, . . . , αnm be its nm roots in the
algebraic closure k̄ of k (some of them may be equal). Obviously, R̄(1, α) = 0,
hence

R(a0(1, α), . . . , an(1, α), b0(1, α), . . . , bm(1, α)) = 0.

By Theorem 6.1, the polynomials in T2 F (1, α, T2) and G(1, α, T2) have a com-
mon root β in k̄. It is also unique in view of our choice of the coordinate
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system. Thus (1, α, β) is a solution of the homogeneous system F = G = 0 in
k̄. This shows that the system F = 0, G = 0 has nm solutions, the multiplicity
of a root α of R̄′ = 0 has to be taken as the multiplicity of the correspond-
ing common solution. Conversely, every solution (β0, β1, β2) of F = G = 0,
where β0 6= 0, defines a root α = β1/β0 of R̄′ = 0. To complete the proof,
we have to consider the case where R̄′ is of degree d < nm. This happens
only if R̄(T0, T1) = T nm−d0 P (T0, T1), where P ∈ k[T0, T1]d does not contain T0

as its irreducible factor. Obviously, R̄(0, 1) = 0. Thus (0, 1, α) is a solution
of F = G = 0 for some α ∈ K. This contradicts our assumption from the
beginning of the proof.

Example 6.3. Fix an algebraically closed field K containing k. Assume that
m = 1, i.e.,

G = α0T0 + α1T1 + α2T2 = 0

is a line. Without loss of generality, we may assume that α2 = −1. Computing
the resultant, we find that, in the notation of the previous proof,

R̄(T0, T1) = a0(α0T0 + α1T1)n + . . .+ an.

Thus R̄ is obtained by ”eliminating” the unknown T2. We see that the line
L : G = 0 “intersects” the curve X : F = 0 at n K-points corresponding to
n solutions of the equation R̄(T0, T1) = 0 in P1(K). A solution is multiple, if
the corresponding root of the dehomogenized equation is multiple. Thus we can
speak about the multiplicity of a common K-point of L and F = 0 in P2(K).
We say that a point x ∈ X(K) is a nonsingular point if there exists at most one
line L over K which intersects X at x with multiplicity > 1. A curve such that
all its points are nonsingular is called nonsingular. We say that L is tangent to
the curve X at a nonsingular point x ∈ P2(K) if x ∈ L(K) ∩ X(K) and its
multiplicity ≥ 2. We say that a tangent line L is an inflection tangent line at x
if the multiplicity ≥ 3. If such a tangent line exists at a point x, we say that x
is an inflection point (or a flex point) of X.

Let P (Z1, . . . , Zn) ∈ k[Z1, . . . , Zn] be any polynomial in n variables with
coefficients in a field k. We define the partial derivatives ∂P

∂Zj
of Z as follows.

First we assume that P is a monomial Zi1
1 · · ·Zin

n and set

∂P

∂Zj
=

{
ijZ

i1
1 · · ·Z

ij−1
j · · ·Zin

n if ij > 0,

0 otherwise
.
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Then we extend the definition to all polynomials by linearity over k requiring that

∂(aP + bQ)

∂Zj
= a

∂P

∂Zj
+ b

∂Q

∂Zj

for all a, b ∈ k and any monomials P,Q. It is easy to check that the partial
derivatives enjoy the same properties as the partial derivatives of functions defined
by using the limits. For example, the map P 7→ ∂P

∂Zj
is a derivation of the k-

algebra k[Z1, . . . , Zn], i.e. , it is a k-linear map ∂ satisfying the chain rule:

∂(PQ) = P∂(Q) +Q∂(P ).

The partial derivatives of higher order are defined by composing the operators of
partial derivatives.

Proposition 6.4. (i) X : F (T0, T1, T2) = 0 be a plane projective curve of de-
gree d. A point (a0, a1, a2) ∈ X(K) is nonsingular if and only if (a0, a1, a2)
is not a solution of the system of homogeneous equations

∂F

∂T0

=
∂F

∂T1

=
∂F

∂T2

= 0.

(ii) If (a0, a1, a2) is a nonsingular point, then the tangent line at this point is
given by the equation

2∑
i=0

∂F

∂Ti
(a0, a1, a2)Ti = 0.

(iii) Assume (char(k), d − 1) = 1. A nonsingular point a = (a0, a1, a2) is an
inflection point if and only if

det


∂2F
∂T 2

0

∂2F
∂T0∂T1

∂2F
∂T0∂T2

∂2F
∂T1∂T0

∂2F
∂T 2

1

∂2F
∂T1∂T2

∂2F
∂T1∂T0

∂2F
∂T2∂T1

∂2F
∂T 2

2

 (a) = 0.

Proof. We check these assertions only for the case (a0, a1, a2) = (1, 0, 0). The
general case is reduced to this case by using the variable change. The usual
formula for the variable change in partial derivatives are easily extended to our
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algebraic partial derivatives. We leave the details of this reduction to the reader.
Write F as a polynomial in T0 with coefficients polynomials in T1, T2.

F (T0, T1, T2) = T q0Pd−q(T1, T2)+T q−1
0 Pd−q+1(T1, T2)+· · ·+Pd(T1, T2), q ≤ d.

Here the subscript indices coincides with the degree of the corresponding homo-
geneous polynomial if it is not zero and we assume that Pd−q 6= 0. We assume
that F (1, 0, 0) = 0. This implies that q < d. A line through the point (1, 0, 0)
is defined by an equation T2 − λT1 = 0 for some λ ∈ k. Eliminating T2 we get

F (T0, T1, λT1) = T q0T
d−q
1 Pd−q(1, λ)+T q−1

0 T d−q+1
1 Pd−q+1(1, λ)+· · ·+T d1Pd(1, λ)

= T d−q1

(
T q0Pd−q(1, λ) + T q−1

0 T1Pd−q+1(1, λ) + · · ·+ T q1Pd(1, λ)
)
.

It is clear that each line intersects the curve X at the point (1, 0, 0) with multi-
plicity > 1 if and only if d − q > 1. Thus (1, 0, 0) is nonsingular if and only if
q = d− 1. In this case we find that

∂F

∂T0

(1, 0, 0) = 0,
∂F

∂T1

(1, 0, 0) = a,
∂F

∂T2

(1, 0, 0) = b,

so both a and b cannot be zeros. On the other hand, if q < d − 1, the same
computation shows that the partial derivatives vanish at (1, 0, 0). This proves
assertion (i). Assume that the point is nonsingular, i.e. d− q = 1. The unique
tangent line satisfies the linear equation

P1(1, λ) = a+ bλ = 0. (6.2)

Obviously, the lines λT1 − T2 = 0 and aT1 + bT2 = 0 coincide. This proves
assertion (ii).

Let P2(T1, T2) = αT 2
1 + βT1T2 + γT 2

2 . Obviously, the point (1, 0, 0) is an
inflection point if and only if P2(1, λ) = 0. Computing the second partial deriva-
tives we find that

det


∂2F
∂T 2

0

∂2F
∂T0∂T1

∂2F
∂T0∂T2

∂2F
∂T1∂T0

∂2F
∂T 2

1

∂2F
∂T1∂T2

∂2F
∂T1∂T0

∂2F
∂T2∂T1

∂2F
∂T 2

2

 (1, 0, 0) = det

 0 (d− 1)a (d− 1)b
(d− 1)a 2α β
(d− 1)b β 2γ


= 2(d− 1)2P2(a, b).

It follows from (6.2) that P2(a, b) = 0 if and only if P2(1, λ) = 0. Since we
assume that (char(k), d − 1) = 1, we obtain that (1, 0, 0) is an inflection point
if and only if the determinant from assertion (iii) is equal to zero.
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Remark 6.5. The determinant

det


∂2F
∂T 2

0

∂2F
∂T0∂T1

∂2F
∂T0∂T2

∂2F
∂T1∂T0

∂2F
∂T 2

1

∂2F
∂T1∂T2

∂2F
∂T1∂T0

∂2F
∂T2∂T1

∂2F
∂T 2

2


is a homogeneous polynomial of degree 3(d− 2) unless it is identically zero. It is
called the Hessian polynomial of F and is denoted by Hess(F ). If Hess(F ) 6= 0,
the plane projective curve of degree 3(d−2) given by the equation Hess(F ) = 0
is called the Hessian curveindexHessian curve of the curve F = 0. Applying
Proposition 6.4 and Bézout’s Theorem, we obtain that a plane curve of degree
d has 3d(d− 2) inflection points counting with multiplicities.

Here is an example of a polynomial F defining a nonsingular plane curve with
Hess(F ) = 0:

F (T0, T1, T2) = T p+1
0 + T p+1

1 + T p+1
2 = 0,

where k is of characteristic p > 0. One can show that Hess(F ) 6= 0 if k is of
characteristic 0.

Let us give an application of the Bézout Theorem. Let

X : F (T0, T1, T2) = 0

be a projective plane cubic curve. Fix a field K containing k (not necessary
algebraically closed). Let k̄ be the algebraic closure of k containing K. We
assume that each point of X(k̄) is nonsingular. Later when we shall study local
properties of algebraic varieties, we give some simple criterions when does it
happen.

Fix a point e ∈ X(K). Let x, y be two different points from X(K). Define
the sum

x⊕ y ∈ X(K)

as a point in X(K) determined by the following construction. Find a line L1

over K with y, x ∈ L1(K). This can be done by solving two linear equations
with three unknowns. By Bézout’s Theorem, there is a third intersection point,
denote it by yx. Since this point can be found by solving a cubic equation over
K with two roots in K (defined by the points x and y), the point yx ∈ X(K).
Now find another K-line L2 which contains yx and e, and let y ⊕ x denote the
third intersection point. If yx happens to be equal to e, take for L2 the tangent
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x y xy

o

x⊕ y

Figure 6.1:

line to X at e. If y = x, take for L1 the tangent line at y. We claim that this
construction defines the group law on X(K).

Clearly

y ⊕ x = x⊕ y,

i.e., the binary law is commutative. The point e is the zero element of the law. If
x ∈ X(K), the opposite point −x is the point of intersection of X(K) with the
line passing through x and the third point x1 at which the tangent at e intersects
the curve. The only non-trivial statement is the property of associativity.

Consider the eight points e, x, y, z, zy, xy, x ⊕ y, y ⊕ z. They lie on three
cubic curves. The first one is the original cubic X. The second one is the union
of three lines

< x, y > ∪ < yz, y ⊕ z > ∪ < z, x⊕ y > (6.3)

where for any two distinct points a, b ∈ P2(K) we denote by < a, b > the unique
K-line L with a, b ∈ L(K). Also the “union” means that we are considering the
variety given by the product of the linear polynomials defining each line. The
third one is also the union of three lines

< y, z > ∪ < xy, x⊕ y > ∪ < x, y ⊕ z > . (6.4)

We will use the following:

Lemma 6.6. Let x1, . . . , x8 be eight distinct points in P2(K). Suppose that all
of them belong to X(K) where X is a plane irreducible projective cubic curve.
Assume also that the points x1, x2, x3 lie on two different lines which do not
contain points xi with i > 3. There exists a unique point x9 such that any cubic
curve Y containing all eight points contains also x9, and either x9 6∈ {x1, . . . , x8}
or x9 enters in X(K) ∩ Y (K) with multiplicity 2.
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Proof. Let Y be given by an equation F = a0T
3
0 + a1T

2
0 T1 + . . . = 0 the

polynomial F . A point x = (α0, α1, α2) ∈ X(K) if and only if the ten coefficients
of F satisfy a linear equation whose coefficients are the values of the monomials
of degree 3 at (α0, α1, α2). The condition that a cubic curve passes through
8 points introduces 8 linear equations in 10 unknowns. The space of solutions
of this system is of dimension ≥ 2. Suppose that the dimension is exactly 2.
Then the equation of any cubic containing the points x1, . . . , x8 can be written
in the form λF1 +µF2, where F1 and F2 correspond to two linearly independent
solutions of the system. Let x9 be the ninth intersection point of F1 = 0
and F2 = 0 (Bézout’s Theorem). Obviously, x9 is a solution of F = 0. It
remains to consider the case when the space of solutions of the system of linear
equation has dimension > 2. Let L be the line with x1, x2 ∈ L(K). Choose two
points x, y ∈ L(K) \ {x1, x2} which are not in X(K). Since passing through
a point imposes one linear condition, we can find a cubic curve Y : G = 0
with x, y, x1, . . . , x8 ∈ Y (K). But then L(K) ∩ Y (K) contains four points.
By Bézout’s Theorem this could happen only if G is the product of a linear
polynomial defining L and a polynomial B of degree 2. By assumption L does
not contain any other point x3, . . . , x8. Then the conic C : B = 0 must contain
the points x3, . . . , x8. Repeating the argument for the points x1, x3, we find a
conic C ′ : B′ = 0 which contains the points x2, x4, . . . , x8. Clearly C 6= C ′

since otherwise C contains 7 common points with an irreducible cubic. Since
C(K) ∩ C ′(K) contains 5 points in common, by Bézout’s Theorem we obtain
that B and B′ have a common linear factor. This easily implies that 4 points
among x4, . . . , x8 must be on a line. But this line cannot intersect an irreducible
cubic at four points in P2

k(K).

Here is an example of the configuration of 8 points which do not satisfy
the assumption of Lemma 6.6. Consider the cubic curve (over C) given by the
equation:

T 3
0 + T 3

1 + T 3
2 + λT0T1T2 = 0.

It is possible to choose the parameter λ such that the curve is irreducible. Let
x1, . . . , x9 be the nine points on this curve with the coordinates:

(0, 1, ρ), (1, 0, ρ), (1, 1, ρ)

where ρ is one of three cube roots of −1. Each point xi lies on four lines
which contain two other points xj 6= xi. For example, (0, 1,−1) lies on the
line T0 = 0 which contains the points (0, 1, ρ), (0, 1, ρ2) and on the three lines
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ρT0−T1−T2 = 0 which contains the points (1, 0, ρ), (1, ρ, 0). The set x1, . . . , x8

is the needed configuration. One easily checks that the nine points x1, . . . , x9

are the inflection points of the cubic curve C (by Remark 6.5 we expect exactly 9
inflection points). The configuration of the 12 lines as above is called the Hesse
configuration of lines.

x2

x2

x1

x1

x9

x6

x3 x4
x5

x8x7

Figure 6.2:

Nevertheless one can prove that the assertion of Lemma 6.6 is true without
additional assumption on the eight points.

To apply Lemma 6.6 we take the eight points e, x, y, z, zy, xy, x ⊕ y, y ⊕ z
in X(K). Obviously, they satisfy the assumptions of the lemma. Observe that
(x ⊕ y)z lies in X(K) and also in the cubic (6.3), and x(y ⊕ z) lies in X(K)
and in the cubic (6.4). By the Lemma (x⊕ y)z = x(y ⊕ z) is the unique ninth
point. This immediately implies that (x⊕ y)⊕ z = x⊕ (y ⊕ z).

Remark 6.7. Our proof is in fact not quite complete since we assumed that all the
points e, x, y, z, zy, xy, x⊕y, y⊕z are distinct. We shall complete it later but the
idea is simple. We will be able to consider the product X(K)×X(K)×X(K)
as a projective algebraic set with the Zariski topology. The subset of triples
(x, y, z) for which the associativity x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z holds is open
(since all degenerations are described by algebraic equations). On the other
hand it is also closed since the group law is defined by a polynomial map. Since
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X(K) ×X(K) ×X(K) is an irreducible space, this open space must coincide
with the whole space.

Remark 6.8. Depending on K the structure of the group X(K) can be very
different. A famous theorem of Mordell-Weil says that this group is finitely
generated if K is a finite extension of Q. One of the most interesting problems
in number theory is to compute the rank of this group. On the other hand, the
group X(C) is isomorphic to the factor group C/Z2. Obviously, it is not finitely
generated.

Problems.
1. Let P (Z) = a0Z

n + a1Z
n−1 + . . .+ an be a polynomial with coefficients

in a field k, and P ′(Z) = na0Z
n−1 + (n− 1)a1Z

n−2 + . . .+ an be its derivative.
The resultant Rn,n−1(P, P ′) of P and P ′ is called the discriminant of P . Show
that the discriminant is equal to zero if and only if P (Z) has a multiple root in
the algebraic closure k̄ of k. Compute the discriminant of quadratic and cubic
polynomials. Using computer compute the discriminant of a quartic polynomial.

2. Let P (Z) = a0(Z − α1) . . . (Z − αn) and Q(x) = b0(Z − β1) . . . (Z − βm) be
the factorizations of the two polynomials into linear factors (over an algebraic closure
of k). Show that

Rn,m(P,Q) = am0 b
n
0

n∏
i=1

m∏
i=1

(αi − βj) = am0

n∏
i=1

Q(αi) = (−1)mnbn0

m∏
j=1

P (βj).

3. Find explicit formulae for the group law on X(C), where X is a cubic curve
defined by the equation T 2

1 T0 − T 3
2 − T 3

0 = 0. You may take for the zero element the
point (0, 1, 0).

4. In the notation of the previous problem, show that elements x ∈ X(C) of order
3 (i.e. 3x = 0 in the group law) correspond to inflection points of X. Show that
there are 9 of them. Show that the set of eight inflection points is an example of the
configuration which does not satisfy the assumption of Lemma 6.6.

5. Let X be given by the equation T 2
1 T0 − T 3

2 = 0. Similarly to the case of a
nonsingular cubic, show that for any field K the set X(K)′ = X(K) \ {(1, 0, 0)} has
a group structure isomorphic to the additive group K+ of the field K.

6. Let X be given by the equation T 2
1 T0−T 2

2 (T2 +T0) = 0. Similarly to the case
of a nonsingular cubic, show that for any field K the set X(K)′ = X(K) \ {(1, 0, 0)}
has a group structure isomorphic to the multiplicative group K∗ of the field K.



Lecture 7

Morphisms of projective algebraic
varieties

Following the definition of a morphism of affine algebraic varieties we can define a
morphism f : X → Y of two projective algebraic varieties as a set of maps fK :
X(K) → Y (K) defined for each k-algebra K such that, for any homomorphism
φ : K → L of k-algebras, the natural diagram

X(K)
X(φ) //

fK
��

X(L)

fL
��

Y (K)
Y (φ) // Y (L)

(7.1)

is commutative. Recall that a morphism of affine varieties f : X → Y is uniquely
determined by the homomorphism f∗ : O(Y )→ O(X). This is not true anymore for
projective algebraic varieties. Indeed, let φ : k[Y ]→ k[X] be a homomorphism of the
projective coordinate rings. Suppose it is given by the polynomials F0, . . . , Fn. Then
the restriction of the map to the set of global lines must be given by the formula

a = (α0, . . . , αn)→ (F0(a), . . . , Fn(a)).

Obviously, these polynomials must be homogeneous of the same degree. Otherwise,
the value will depend on the choice of coordinates of the point a ∈ X(K). This is
not all. Suppose all Fi vanish at a. Since (0, . . . , 0) 6∈ C(K)n, the image of a is not
defined. So not any homomorphism k[Y ] → k[X] defines a morphism of projective
algebraic varieties. In this lecture we give an explicit description for morphisms of
projective algebraic varieties.

Let us first learn how to define a morphism f : X → Y ⊂ Pnk from an affine
k-variety X to a projective algebraic k-variety Y . To define f it is enough to define
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f : X → Pnk and to check that fK(X(K)) ⊂ Y (K) for each K. We know that
X(K) = Homk−alg(O(X),K). Take K = O(X) and the identity homomorphism
idO(X) ∈ X(K). It is sent to an element M ∈ Pnk(O(X)). The projective O(X)-
module M completely determines f . In fact, let x ∈ X(K) and evx : O(X) → K
be the corresponding homomorphism of k-algebras. Using the commutative diagram
(7.1) (where K = O(X), L = K,φ = evx), we see that

fK(x) = M ⊗O(X) K, (7.2)

where K is considered as an O(X)-algebra by means of the homomorphism evx (i.e.
a · z = evx(a)z for any a ∈ O(X), z ∈ K). Conversely, any M ∈ Pn(O(X) defines a
map f : X → Pnk by using formula (7.2). If M is a global line defined by projective
coordinates (a0, . . . , an) ∈ C(O(X))n, then

fK(x) = M ⊗O(X) K = (a0(x), . . . , an(x))K ∈ Pn(K),

where as always we denote evx(a) by a(x). Since O(X) = k[Z1, . . . , Zn]/I for some
ideal I, we can choose polynomial representatives of ai’s to obtain that our map is
defined by a collection of n + 1 polynomials (not necessary homogeneous of course
since X is affine). They do not simultaneously vanish at x since a0, . . . , an generate
the unit ideal. However, in general M is not necessary a free module, so we have to
deal with maps defined by local but not global lines over O(X). This explains why we
had to struggle with a general notion of Pn(A).

Let us describe more explicitly the maps corresponding to any local line M . Let
us choose a covering family {ai}i∈I which trivializes M , i.e. Mi = Mai is a global

line defined by projective coordinates (p
(i)
0 /ari , . . . , p

(i)
n /ari ) ∈ C(O(X)ai)n. Note that

since ari is invertible in O(X)ai we can always assume that r = 0. If no confusion
arises we denote the elements a/1, a ∈ A in the localization Af of a ring A by a.

Since 1 =
∑

j bjp
(i)
j /a

r
i for some b0, . . . , bn ∈ O(X)ai , we obtain, after clearing the

denominators, that the ideal generated by p
(i)
0 , . . . , p

(i)
n is equal to (adi ) for some d ≥ 0.

So

(p
(i)
0 , . . . , p(i)

n ) ∈ C(O(X)ai)n but, in general, (p
(i)
0 , . . . , p(i)

n ) 6∈ C(O(X))n.

Assume ai(x) = evx(ai) 6= 0. Let xi be the image of x ∈ X(K) in X(Kai(x))
under the natural homomorphism K → Kai(x). Let us consider Kai(x) as an O(X)-

algebra by means of the composition of homomorphisms O(X)
evx−→ K → Kai(x).

Then

fKai(x)
(xi) = M⊗O(X)Kai(x)

∼= (M⊗O(X)O(X)ai)⊗O(X)ai
Kai(x) = Mi⊗O(X)ai

Kai(x),
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where Kai(x) is an O(X)ai-algebra by means of the homomorphism O(X)ai → Kai(x)

defined by a
ari
7→ a(x)

ai(x)r . Since Mi = (p
(i)
0 , . . . , p

(i)
n )O(X)ai we obtain that

fKai(x)
(xi) = (p

(i)
0 (x), . . . , p(i)

n (x))Kai(x) ∈ Pn(Kai(x)).

If K is a field, Kai(x) = K (because ai(x) 6= 0) and we see that, for any x ∈ X(K)
such that ai(x) 6= 0 we have

fK(x) = (p
(i)
0 (x), . . . , p(i)

n (x)) ∈ Pn(K). (7.3)

Thus we see that the morphism f : X → Pnk is given by not a “global” polynomial
formula but by several “local” polynomial formulas (7.3). We take x ∈ X(K), find
i ∈ I such that ai(x) 6= 0 (we can always do it since 1 =

∑
i∈I biai for some

bi ∈ O(X)) and then define fK(x) by formula (7.3).
The collection

{(p(i)
0 , . . . , p(i)

n )}i∈I

of elements (p
(i)
0 , . . . , p

(i)
n ) ∈ O(X)n+1 satisfies the following properties:

(i) (p
(i)
0 , . . . , p

(i)
n ) = (adii ) for some di ≥ 0;

(ii) for any i, j ∈ I, (p(i)
0 , . . . , p

(i)
n ) = gij(p

(j)
0 , . . . , p

(j)
n ) in (O(X)aiaj )

n+1 for some
invertible gij ∈ O(X)aiaj ;

(iii) for any F from the homogeneous ideal defining Y, F (p
(i)
0 , . . . , p

(i)
n ) = 0, i ∈ I.

Note that the same map can be given by any other collection:

(q
(j)
0 , . . . , q(j)

n )j∈J

defining the same local line M ∈ Pn(O(X)) in a trivializing covering family {bj}j∈J .
They agree in the following sense:

p
(i)
k = q

(j)
k gij , k = 0, . . . , n,

where gij ∈ O(X)∗aibj .

For each i ∈ I this collection defines a projective module Mi ∈ Pn(O(X)ai)

generated by (p
(i)
0 , . . . , p

(i)
n ). We shall prove in the next lemma that there exists

a projective module M ∈ Pn(O(X)) such that Mai
∼= Mi for each i ∈ I. This

module is defined uniquely up to isomorphism. Using M we can define f by sending
idO(X) ∈ X(O(X)) to M . If x ∈ X(K), where K is a field, the image fK(x) is
defined by formulae (7.3).
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Let us now state and prove the lemma. Recall first that for any ring A a local line
M ∈ Pn(A) defines a collection {Mai}i∈I of lines in An+1

ai for some covering family
{ai}i∈I of elements in A. Let us see how to reconstruct M from {Mai}i∈I . We know
that for any i, j ∈ I the images mi of m ∈ M in Mai satisfy the following condition
of compatibility:

ρij(mi) = ρji(mj)

where ρij : Mai →Maifj is the canonical homomorphism m/ari → mf rj /(aifj)
r.

For any family {Mi}i∈I of Aai-modules let

limindi∈IMi = {(mi)∈I ∈
∏
i∈I

Mi : ρij(mi) = ρji(mj) for any i, j ∈ I}.

This can be naturally considered as a submodule of the direct product
∏
i∈IMi of

A-modules. There is a canonical homomorphism

α : M → limindi∈IMai

defined by m→ (mi = m)i∈I .

Lemma 7.1. The homomorphism

α : M → limindi∈IMai

is an isomorphism.

Proof. We assume that the set of indices I is finite. This is enough for our applications
since we can always choose a finite covering subfamily. The proof of injectivity is similar
to the proof of Lemma 5.11 and is left to the reader. Let us show the surjectivity. Let

(
mi

ani
i

)i∈I ∈ limindi∈IMai

for some mi ∈M and ni ≥ 0. Again we may assume that all ni are equal to some n.
Since for any i, j ∈ I

ρij(
mi

ani
) = ρji(

mj

anj
),

we have

(aiaj)
r(anjmi − animj) = 0

for some r ≥ 0. Let pi = mia
r
i , k = r + n. Then

mi

rani
=
pi

aki
, fkj pi = aki pj .
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We can write 1 =
∑

i bia
k
i . Set m =

∑
i bipi. Then

akjm =
∑
i

bia
k
j pi =

∑
i

bia
k
i pj = 1pj = pj .

This shows that the image of m in each Mai coincides with pi/a
k
i = mi/a

n
i for each

i ∈ I. This proves the surjectivity.

In our situation, Mi is generated by (p
(i)
0 , . . . , p

(i)
n ) ∈ C(O(Xai) and property (ii)

from above tells us that (Mi)aj = (Mj)ai . Thus we can apply the lemma to define
M .

Let f : X → Y be a morphism of projective algebraic varieties, X ⊂ Pmk , Y ⊂ Pnk .
For every k-algebra K and M ∈ X(K) we have N = fK(M) ∈ Y (K). It follows
from commutativity of diagrams (7.1) that for any a ∈ K, f(Ka)(Ma) = Na. Let
{ai}i∈I be a covering family of elements in K. Then, applying the previous lemma,
we will be able to recover N from the family {Nai}i∈I . Taking a covering family which
trivializes M , we see that our morphism f : X → Y is determined by its restriction
to X ′ : K → Pn(K)′ ∩ X(K), i.e., it suffices to describe it only on ”global” lines
M ∈ X(K). Also observe that we can always choose a trivializing family {ai}i∈I of
any local line M ∈ X(K) in such a way that Mai is given by projective coordinates

(t
(i)
0 , . . . , t

(i)
m ) with at least one t

(i)
j invertible in Aai . For example we can take the

covering family, where each ai is replaced by {ait(i)0 , . . . , ait
(i)
m } (check that it is a

covering family) then each t
(i)
j is invertible in K

ait
(i)
j

. Note that this is true even when

t
(i)
j = 0 because K0 = {0} and in the ring {0} one has 0 = 1. Thus it is enough

to define the maps X(K) → Y (K) on the subsets X(K)′′ of global K-lines with at
least one invertible projective coordinate.

Let X be defined by a homogeneous ideal I ⊂ k[T0, . . . , Tm]. We denote by Ir the
ideal in the ring k[T0/Tr, . . . , Tm/Tr] obtained by dehomogenizations of polynomials
from I. Let Xr ⊂ Amk be the corresponding affine algebraic k-variety. We have
O(Xr) ∼= k[T0/Tr, . . . , Tm/Tr]/Ir. We have a natural map ir : Xr(K) → X(K)′′

obtained by the restriction of the natural inclusion map ir : Km → Pm(K)′′ (putting
1 at the rth spot). It is clear that each x ∈ X(K)′′ belongs to the image of some
ir. Now to define the morphism X → Y it suffices to define the morphisms fr :
Xr → Y, r = 0, . . . ,m. This we know how to do. Each fr is given by a collection

{(p(s)
0 , . . . , p

(s)
n )}s∈S(r), where each coordinate p

(s)
j is an element of the ring O(X)r),

and as ∈ rad({p(s)
0 , . . . , p

(s)
n }) for some as ∈ O(X)r. We can find a representative

of p
(s)
j in k[T0/Tr, . . . , Tm/Tr] of the form P

(s)
j /T

dj
r where P

(s)
j is a homogeneous

polynomials of the same degree dj . Reducing to the common denominator, we can
assume that dj = d(s) is independent of j = 0, . . . , n. Also by choosing appropriate
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representative Fs/T
l
r for as, we obtain that Tαr F

β
s ∈ (P

(s)
0 , . . . , P

(s)
n ) + I. Collecting

all these data for each r = 0, . . . ,m, we get that our morphism is given by a collection
of

(P
(s)
0 , . . . , P (s)

n ) ∈ k[T0, . . . , Tm]d(s), s ∈ S = S(0)
∐

. . .
∐

S(m).

The map is given as follows. Take x = (x0, . . . , xm) ∈ X(K)′′. If xr is invertible in
K, send x to a local line from Y (K) defined by the global lines

(P
(s)
0 (x), . . . , P (s)

n (x)) ∈ Y (KFs(x)), s ∈ S(r)

Since we can write for any s ∈ S(r), T
α(r)
r F

β(r)
s =

∑
j LjP

(s)
j + I, plugging x in both

sides, and using that Tr(x)α(r) = x
α(r)
r is invertible, we obtain

Fs(x)β(r) =
∑
j

Lj(x)P
(s)
j (x).

This shows that (P
(s)
0 (x), . . . , P

(s)
n (x)) ∈ Cn(KFs(x)) is satisfied. Note that this

definition is independent from the choice of projective coordinates of x. In fact, if we

multiply x by λ ∈ K∗, we get P
(s)
0 (λx) = λk(s)P

(s)
0 (x). Also Fs(x) will change to

λdFs(x) for some d ≥ 0, which gives the same localization KFs(x).
Of course this representation is not defined uniquely in many ways. Also it must

be some compatibility condition, the result of our map is independent from which r we
take with the condition that xr ∈ K∗. As is easy to see this is achieved by requiring:

P
(s)
j P

(s′)
k − P (s)

k P
(s′)
j ∈ I

for any s ∈ S(r), s′ ∈ S(r′) and any k, j = 0, . . . , n. Since F (p
(s)
0 , . . . , p

(s)
n ) = 0 for

any F from the homogeneous ideal J defining Y , we must have

F (P
(s)
0 , . . . , P (s)

n ) ∈ I for any s ∈ S.

The following proposition gives some conditions when a morphism X → Y can be
given by one collection of homogeneous polynomials:

Proposition 7.2. Let X ⊂ Pmk and Y ⊂ Pnk be two projective algebraic varieties
defined by homogeneous ideals I ⊂ k[T0, . . . , Tm] and J ⊂ k[T ′0, . . . , T

′
n], respectively.

Let φ : k[T ′]/J → k[T ]/I be a homomorphism given by polynomials F0, . . . , Fn ∈
k[T0, . . . , Tm] (whose cosets modulo I are the images of T ′i modulo I). Assume

(i) all Fi ∈ k[T0, . . . , Tm]d for some d ≥ 0;

(ii) the ideal in k[T0, . . . , Tm] generated by the ideal I and Fi’s is irrelevant (i.e.,
contains the ideal k[T0, . . . , Tm]≥s for some s > 0).
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Then the formula:

a = (α0, . . . , αm)→ (F0(a), . . . , Fn(a)), a ∈ X(K) ∩ Pm(K)′

defines a morphism f : X → Y .

Proof. Observe that property (i) is needed in order the formula for the map is well
defined on orbits of K∗ on C(K)n. We also have to check that (F0(a), . . . , Fn(a)) ∈
C(K)n ∩ Y (K) for all k-algebras K. The “functoriality” (i.e. the commutativity of
the diagrams corresponding to homomorphisms K → K ′) is clear. Let a] : k[T ]/I →
K, Ti mod I → αi, be the homomorphisms defined by the point a. The composition
a]◦φ : k[T ′]/J → K is defined by sending T ′j mod J to Fj(a). Thus for any G ∈ J we
have G(F0(a), . . . , Fn(a)) = 0. It remains to show that (F0(a), . . . , Fn(a)) ∈ C(K)n.
Suppose the coordinates generate a proper ideal a of K. By assumption, for some
s > 0, we can write T si =

∑
j QjFj + a, for some Qj ∈ k[T ]. Thus asi = T si (a) ∈

I. Writing 1 =
∑

i bia
s
i , we obtain that 1 ∈ a. This contradiction shows that

(F0(a), . . . , Fn(a)) ∈ C(K)n. This proves the assertion.

Example 7.3. Let φ : k[T0, . . . , Tn] → k[T0, . . . , Tn] be an automorphism of the
polynomial algebra given by a linear homogeneous change of variables. More precisely:

φ(Ti) =

n∑
j=0

aijTj , i = 0, . . . , n

where (aij) is an invertible (n+ 1)× (n+ 1)-matrix with entries in k. It is clear that
φ satisfies the assumption of Proposition 7.2, therefore it defines an automorphism:
f : Pnk → Pnk . It is called a projective automorphism.

Example 7.4. Assume char(k) 6= 2. Let C ⊂ A2
k be the circle Z2

1 + Z2
2 = 1 and let

X : T 2
1 +T 2

2 = T 2
0 be its projective closure in P2

k. Applying a projective automorphism
of P2

k, T0 → T2, T1 → T0−T1, T2 → T0 +T1 we see that X is isomorphic to the curve
T 2

0 −T1T2 = 0. Let us show that X is isomorphic to P1
k. The corresponding morphism

f : P1
k → X is given by

(a0, a1)→ (a0a1, a
2
0, a

2
1).

The polynomials T0T1, T
2
0 , T

2
1 , obviously satisfy the assumption of the Proposition 7.2.

The inverse morphism f−1 : X → P1
k is defined by the formula:

(a0, a1, a2)→

{
(a1, a0) if a1 ∈ K∗,
(a0, a2) if a2 ∈ K∗
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Note that a0 ∈ K∗ if and only if a1, a2 ∈ K∗,

(a1, a0) = a2(a1, a0) = (a1a2, a0a2) = (a2
0, a0a2) = a0(a0, a2) = (a0, a2)

if a1, a2 ∈ K∗, and

(a0, a1, a2)→ (a1, a0)→ (a1a0, a
2
1, a

2
0) = (a1a0, a

2
1, a1a2) =

a1(a0, a1, a2) = (a0, a1, a2) if a1 ∈ K∗,

(a0, a1, a2)→ (a0, a2)→ (a0a2, a
2
0, a

2
2) =

(a0a2, a1a2, a
2
2) = a2(a0, a1, a2) = (a0, a1, a2) if a2 ∈ K∗.

Similarly, we check that the other composition of the functor morphisms is the identity.
Recall that the affine circle X is not isomorphic to the affine line A1

k.

Example 7.5. A projective subvariety E of Pnk is said to be a projective subspace of
dimension d (or d-flat) if it is given by a system of linear homogeneous equations with
coefficients in k, whose set of solutions in kn+1 is a linear subspace E of kn+1 of
dimension d + 1. It follows from linear algebra that each such E can be given by a
homogeneous system of linear equations

L0 = 0, . . . , Ln−d−1 = 0.

Let X ⊂ Pnk be such that

X(k) ∩ E(k) = ∅.

Then the map

a 7→ (L0(a), . . . , Ln−d−1(a)), a ∈ X(K)′,

defines a morphism

pE : X → Pn−d−1
k

which is said to be a linear projection from E. Let L be a projective subspace of
dimension n − d − 1 such that E(K) ∩ L(K) = ∅. Then we can interpret the
composition pE : X → Pn−d−1

k → Pnk as follows. Take a point x ∈ X(K)′, find a
projective subspace E′ ⊂ Pnk of dimension d+ 1 such that E′(K) contains E(K) and
x. Then

pE(x) = E′(K) ∩ L(K).

We leave this verification to the reader (this is a linear algebra exercise).



65

Example 7.6. We already know that P1
k is isomorphic to a subvariety of P2

k given by
an equation of degree 2. This result can be generalized as follows. Let N =

(
n+m
m

)
−1.

Let us denote the projective coordinates in PNk by

Ti = Ti0...in , i0 + . . .+ in = |i| = m.

Choose some order in the set of multi-indices i with |i| = m. Consider the morphism
(the Veronese morphism of degree m)

vn,m : Pnk → PNk ,

defined by the collection of monomials (. . . ,Ti, . . .) of degree m. Since Ti generate
an irrelevant ideal, we can apply Proposition 17.4, so this is indeed a morphism. For
any k-algebra K the corresponding map vn,m(K)′ : Pnk(K)′ → PNk (K) is defined by
the formula (a0, . . . , an) → (. . . , T i(a), . . .). The image of vn,m(K)′ is contained in
the set Vermn (K), where Vermn is the projective subvariety of PNk given by the following
system of homogeneous equations

{TiTj −TkTt = 0}i+j=k+t.

It is called the m-fold Veronese variety of dimension n. We claim that the image
of vn,m(K) is equal to Vermn (K) for all K, so that vn,m defines an isomorphism of
projective algebraic varieties:

vn,m : Pnk → Vermn .

To verify this it suffices to check that vn,m(K)(Pnk(K)′′) = Vermn (K)′′ (compare with
the beginning of the lecture). It is easy to see that for every (. . . , ai, . . .) ∈ Vermn (K)′′

at least one coordinate amei is invertible (ei is the i-th unit vector (0, . . . , 1, . . . 0)).
After reindexing, we may assume that ame1 6= 0. Then the inverse map is given by
the formula:

(x0, x1, . . . , xn) = (a(m,0,...,0), a(m−1,1,0,...,0), . . . , a(m−1,0,...,0,1)).

Note that the Veronese map v1,2 : P1
k → P2

k is given by the same formulas as the map
from Example 7.4, and its image is a conic.

Next we want to define the Cartesian product X × Y of two projective varieties
X and Y in such a way that the set of K-points of X × Y is naturally bijectively
equivalent to X(K)× Y (K). The naturality is again defined by the commutativity of
diagrams corresponding to the maps X × Y (K) → X × Y (L) and the product map
X(K)×Y (K)→ X(L)×Y (L). Consider first the case where X = Pnk and Y = Pmk .
For any k-algebra K and two submodules M ⊂ Kn+1,M ′ ⊂ Km+1 we shall consider
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the tensor product M ⊗N as a submodule of Kn+1 ⊗K Km+1 ∼= K(n+1)(m+1). It is
easy to see that this defines a map (called the Segre map)

s(n,m)K : Pn(K)× Pm(K)→ PN (K), N = (n+ 1)(m+ 1)− 1.

Its restriction to Pn(K)′ × Pm(K)′ is defined by the formula

((a0, . . . , an), (b0, . . . , bm)) = (a0b0, . . . , a0bm, a1b0, . . . , a1bm, . . . , anb0, . . . , anbm).

It is checked immediately that this map is well defined. It is easy to see that it
is injective on the subsets Pn(K)′′ × Pmk (K)′′. In fact, if ai ∈ K∗, we may assume
ai = 1, and reconstruct (b0, . . . , bm) from the right-hand side. Similarly we reconstruct
(a0, . . . , an). It is clear that the image of the map s(n,m)K is contained in the set
Z(K), where Z is a projective subvariety of PNk given by the equations:

TijTlk − TikTlj = 0, i, l = 0, . . . , n; j, k = 0, . . . ,m. (7.4)

in the polynomial ring k[T0, . . . , TN ], T0 = T00, . . . , TN = Tnm. It is called the Segre
variety . Let us show that the image of s(n,m)K is equal to Z. Since we can re-
construct any M ∈ Pn(K) from its localizations, it suffices to verify that the map
s(n,m)′′K : Pn(K)′′ × Pm(K)′′ → Z(K)′′ is surjective. Let z = (z00, . . . , znm) ∈
Z(K)′′ with some zij ∈ K∗. After reindexing we may assume that z00 ∈ K∗. Then
zij = z00zij = z0jzi0 for any i = 0, . . . , n, j = 0, . . . ,m. Thus, z = sn,m(K)′′(x, y),
where

x = (z00, z10, . . . , zn0), y = (z00, z01, . . . , z0m).

It remains to set
Pnk × Pmk = Z ⊂ PNk . (7.5)

At this point it is natural to generalize the notion of a projective variety as we did
for an affine variety.

Definition 7.1. A projective algebraic k-variety is a correspondence F which assigns
to each k-algebra K a set F(K) together with maps F(φ) : F(K) → F(L) defined
for any homomorphism φ : K → L of k-algebras such that the following properties
hold:

(i) F(φ) ◦ F(ψ) = F(φ ◦ ψ) for any φ : K → L and ψ : L→ N ;

(ii) there exists a projective algebraic k-variety X and a set of bijections ΦK :
F(K)→ X(K) such that for any φ : K → L the following diagram is commu-
tative:

F(K)
F(φ) //

ΦK

��

F(L)

ΦL

��
X(K)

X(φ) // X(L)

(7.6)
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With this definition in mind we can say that the correspondence K → Pn(K) ×
Pm(K) is a projective algebraic variety.

We leave to the reader to define the notions of a morphism and isomorphism
between projective algebraic k-varieties.

For example, one defines the projection morphisms:

p1 : Pnk × Pmk → Pnk , p2 : Pnk × Pmk → Pmk .

Now for any two projective subvarieties X ⊂ Pnk and Y ⊂ Pmk defined by the
equations {Fs(T0, . . . , Tn) = 0}s∈S and {Gs′(T ′0, . . . , T ′m) = 0}s′∈S′ , respectively, the
product X×Y is isomorphic to the projective subvariety of PNk , N = (n+1)(m+1)−1,
defined by the equations:

T
′r(s)
j Fs(T ) = 0, j = 0, . . . ,m, s ∈ S, r(s) = deg(Fs(T )),

T
r(s′)
i Fs′(T

′) = 0, i = 0, . . . , n, s′ ∈ S′, r(s′) = deg(F ′s′(T )),

TijTlk − TikTlj = 0, i, l = 0, . . . , n; j, k = 0, . . . ,m,

where we write (uniquely) every monomial T
′r(s)
j Ti (resp. T

r(s′)
i T′i) as the product

of the variables Tij = TiT
′
j , i = 0, . . . , n (resp. Tij = T ′iTj , j = 0, . . . ,m).

Remark 7.7. Recall that for any two objects X and Y of a category C, the Cartesian
product is defined as an object X × Y satisfying the following properties. There are
morphisms p1 : X × Y → X and p2 : X × Y → Y such that for any object Z and
morphisms f : Z → X, g : Z → Y there exists a unique morphism α : Z → X × Y
such that f = p1 ◦ α, g = p2 ◦ g. It is easy to see that the triple (X × Y, p1, p2) is
defined uniquely, up to isomorphism, by the above properties. A category is called a
category with products if for any two objects X and Y the Cartesian product X × Y
exists. For example, if C = Sets, the Cartesian product is the usual one. If C is the
category Ǎ of contravariant functors from a category A to Sets, then it has products
defined by the products of the values:

X × Y (A) = X(A)× Y (A).

The Segre map construction shows that the category of projective algebraic varieties
over a field k has products. As we saw earlier, the category of affine algebraic varieties
also has products.

Problems.

1. Prove that any projective d-subspace in Pnk is isomorphic to Pdk.
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2. Prove that P1
k×P1

k is isomorphic to a hypersurface Q ⊂ P3
k given by a homogeneous

equation of degree 2 (a quadric). Conversely, assuming that k is algebraically closed
of char(k) 6= 2, show that every hypersurface :

F (T0, T1, T2, T3) =
∑

0≤i≤3

aijT
2
i + 2

∑
0≤i<j≤3

aijTiTj = 0,

where the symmetric matrix (aij) is nonsingular, is isomorphic to P1
k × P1

k. Give an
explicit formula for the projection maps: pi : Q→ P1

k.

3. Show that Vern1 is isomorphic to the projective closure of the affine curve given by
the equations {Zn−Zn1 = 0, . . . , Z2−Z2

1 = 0} (a rational normal curve of degree n).
Compare this with the Problem 6 of Lecture 5.

4. Show that the image of a linear projection of the twisted cubic curve in P3
k from a

point not lying on this curve is isomorphic to a plane cubic curve. Find its equation
and show that this curve is singular in the sense of the previous lecture.

5. Show that the symmetric m-power Sm(M) of a projective module is a projective
module. Using this prove that the Veronese map vn,m is defined by the formula
M → Symm(M).

6. a) Show that Pn(K)′′ × Pmk (K)′′ is naturally bijectively equivalent to the set of
(n+1)× (n+1) matrices of rank 1 with coefficients in K defined up to multiplication
by a nonzero scalar.

b) Show that Ver2
n(K)′′ is naturally bijectively equivalent to the set of symmetric rank

1 square matrices of size n+ 1 with coefficients in K defined up to multiplication by
a nonzero scalar.

7. Construct a morphism from P1
k to the curve X equal to the projective closure of

the affine curve (Z2
1 + Z2

2 )2 − Z2(3Z2
1 − Z2

2 )) ⊂ A2
k. Is X isomorphic to P1

k?



Lecture 8

Quasi-projective algebraic sets

Let k be a field and K be an algebraically closed field containing k as a subfield.

Definition 8.1. A projective algebraic set over k (or a projective algebraic k-set) is a
subset V of Pn(K) such that there exists a projective algebraic variety X over k with
X(K) = V .

The variety X with X(K) = V 6= ∅ is not defined uniquely by V . However, as
follows from the Nullstellensatz

X(K) = Y (K)⇐⇒ rad(I(X)) = rad(I(Y )).

Thus, if we require that X is given by a radical homogeneous ideal, the variety X is
determined uniquely by the set X(K). In the following we will always assume this.
Note that a radical homogeneous ideal I coincides with its saturation Isat. Indeed, if
msF ∈ I for some s and F ∈ k[T ]d then all monomials entering into F belong to md.
In particular, F s ∈ mds ⊂ ms and F sF = F s+1 ∈ I. Since I is radical this implies
that F ∈ I. In fact we have shown that, for any ideal I, we have

I ⊂ Isat ⊂ rad(I).

This, if I = rad(I), then I = Isat. Since a projective algebraic k-variety is uniquely
determined by a saturated homogeneous ideal, we see that there is a bijective cor-
respondence between projective algebraic k-sets and projective algebraic k-varieties
defined by a radical homogeneous ideal (they are called reduced projective algebraic
k-varieties).

We can consider Pn(K) as a projective algebraic set over any subfield k of K.
Any projective algebraic k-subset of Pn(K) is called a closed subset of Pn(K). The
reason for this definition is explained by the following lemma.
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Proposition 8.1. There exists a unique topology on the set Pn(K) whose closed
subsets are projective algebraic k-subsets of Pnk(K).

Proof. This is proven similarly to that in the affine case and we omit the proof.

The topology on Pn(K) whose closed sets are projective algebraic subsets is said
to be the Zariski k-topology. We will denote the corresponding topological space by
Pnk(K). As is in the affine case we will drop k from the definitions and the notations
if k = K. Every subset of Pnk(K) will be considered as a topological subspace with
respect to the induced Zariski k-topology.

Lemma-Definition 8.2. A subset V of a topological space X is said to be locally
closed if one the following equivalent properties holds:

(i) V = U ∩ Z, where U is open and Z is closed;

(ii) V is an open subset of a closed subset of X;

(iii) V = Z1 \ Z2, where Z1 and Z2 are closed subsets of X.

Proof. Left to the reader.

Definition 8.2. A locally closed subset subset of Pnk(K) is called a quasi-projective
algebraic k-set.

In other words, a quasi-projective k-subset of Pn(K) is obtained by taking the set
of K-solutions of a homogeneous system of algebraic equations over k and throwing
away a subset of the solutions satisfying some additional equations.

An example of an open quasi-projective subset is the subset

Pn(K)i = {(a0, . . . , an) ∈ Pn(K) : ai 6= 0}.

Its complement is the “coordinate hyperplane”:

Hi = {(a0, . . . , an) ∈ Pn(K) : ai = 0}.

Every affine algebraic k-set V ⊂ Ank(K) can be naturally considered as a quasi-
projective algebraic set. We view An(K) = Kn as the open subset Pn(K)0, then note
that V = V̄ ∩ Pn(K)0, where V̄ is the closure of V defined by the homogenization of
the ideal defining V . It is clear that, in general V is neither open nor closed subset
of Pn(K). Also observe that V̄ equals the closure in the sense of topology, i.e., the
minimal closed subset of Pnk(K) which contains V .

Next, we want to define regular maps between quasi-projective algebraic sets.
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Definition 8.3. A map f : V → W ⊂ Pm(K) of quasi-projective algebraic k-sets is
called regular if there exists a finite open cover V = ∪iUi such that the restriction of
f to each open subset Ui is given by a formula:

x→ (F
(i)
0 (x), . . . , F (i)

m (x)),

where F
(i)
0 (T ), . . . , F

(i)
m (T ) are homogeneous polynomials of some degree di with co-

efficients in k.

Proposition 8.3. If V = X(K) and W = Y (K) for some projective algebraic k-
varieties X and Y , and f : X → Y is a morphism of projective algebraic varieties,
then fK : V →W is a regular map.

Proof. We have shown in Lecture 7 that the restriction of fK to each open set V ∩(Pn)i
is given by several collections of homogeneous polynomials. Each collection is defined
on an open set of points where some element of a covering family does not vanish.

Let V ⊂ Pnk(K),W = A1(K). A regular map f : V → A1(K) ⊂ P1
k(K) is given

(“locally”) by two homogeneous polynomials F0(T ), F1(T ) ∈ k[T0, . . . , Tn]d such that
F0(x) 6= 0 for all x in some open subset Ui of V (could be the whole V but this is
unlikely in general). Its value

f(x) = (F0(x), F1(x)) = (1, F1(x)/F0(x))

can be identified with the element F1(x)/F0(x) of the field K = A1(K). Thus f
is given in Ui by a function of the form F/G, where F and G are homogeneous
polynomials of the same degree with G(x) 6= 0 for all x ∈ Ui. Two such functions
F/G and F ′/G′ are equal on Ui if and only if (FG′ − F ′G)(x) = 0 for all x ∈ Ui. If
V is irreducible this implies that (FG′ − F ′G)(x) = 0 for all x ∈ V .

A regular map f : V → A1(K) is called a regular function on V . The set of regular
functions form a k- algebra with respect to multiplication and addition of functions.
We shall denote it by O(V ). As we will prove later O(V ) = k if V is a projective
algebraic k-set. On the opposite side we have:

Proposition 8.4. Let V ⊂ An be an affine algebraic set considered as a closed subset
in Pn(K)i. Then O(V ) is isomorphic to the algebra of regular function of the affine
algebraic set V .

Proof. Without loss of generality we may assume that i = 0. Let us, for a mo-
ment, denote the algebra of regular functions on an affine algebraic set (in the old
sense) by O(V )′. If f ∈ O(V )′, we represent it by a polynomial F (Z1, . . . , Zn) =
P (T0, . . . , Tn)/T r0 for some homogeneous polynomial P of degree r. Then f coincides
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with a regular function in the new definition given by polynomials (T r0 , P (T0, . . . , Tn)).
This defines a homomorphism O(V )′ → O(V ). Its injectivity is obvious. Let us show
that this homomorphism is surjective. Let V be given by a system of equations
Fs(Z1, . . . , Zn) = 0, s ∈ S, and f ∈ O(V ) and {Ui}i∈I be an open cover of V such
that there exist homogeneous polynomials Pi(T0, . . . , Tn), Qi(T0, . . . , Tn) of the same
degree di for which

fi(x) = Pi(x)/Qi(x), Qi(x) 6= 0 for all x ∈ Ui.

Let Qi(Z)′, Pi(Z)′ denote the dehomogenized polynomials. We have

Qi(x)′f(x) = Pi(x)′, i ∈ I, x ∈ Ui.

If we multiply both sides by a polynomial vanishing on the closed subset V \ Ui, we
will have the equality valid for all x ∈ V . We assume that this is the case. The system
of equations

Qi(Z)′ = 0, i ∈ I, Fs(Z) = 0, s ∈ S,

has no solutions in Kn. By Hilbert’s Nullstellensatz

1 =
∑
i

AiQi(Z)′ +
∑
s

BsFs(Z) (8.1)

for some polynomials Ai, i ∈ I, and Bs, s ∈ S. Thus, for any x ∈ V ,

f(x) =
∑
i

Ai(x)Qi(x)′f(x) =
∑
i

Ai(x)Pi(x)′ = (
∑
i

AiP
′
i )(x).

This shows that f is a global polynomial map, i.e. a regular function on V .

An isomorphism (or a biregular map) of quasi-projective algebraic sets is a bijective
regular map such that the inverse map is regular (see Remark 3.7 in Lecture 3 which
shows that we have to require that the inverse is a regular map). Two sets are
isomorphic if there exists an isomorphism from one set to another.

It is not difficult to see (see Problem 8) that a composition of regular maps is a
regular map. This implies that a regular map f : V →W defines the homomorphism
of k-algebras f∗(O(W )→ O(V ). However, in general, this homomorphism does not
determine f uniquely (as in the case of affine algebraic k-sets).

Definition 8.4. A quasi-projective algebraic set is said to be affine if it is isomorphic
to an affine algebraic set.
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Let V be a closed subset of Pn(K) defined by an irreducible homogeneous poly-
nomial F of degree m > 1. The complement set U = Pn(K) \V does not come from
any closed subset of Pn(K)i since V does not contain any hyperplane Ti = 0. So,
U is not affine in the way we consider any affine set as a quasi-projective algebraic
set. However, U is affine. In fact, let vn,m : Pn(K)→ PN(n,m) be the Veronese map
defined by monomials of degree m. Then vn,m(U) is contained in the complement of
a hyperplane H in PN(n,m) defined by considering F as a linear combination of mono-
mials. composing vn,m with a projective linear transformation we may assume that H
is a coordinate hyperplane. Thus vn,m defines an isomorphism from U to the open
subset of the Veronese projective algebraic set V ern,m(K) = vn,m(Pn(K)) whose
complement is the closed subset V ern,m(K)∩H. But this set is obviously affine, it is
defined in PN(n,m)(K)i = KN(n,m) by dehomogenizations of the polynomials defining
Vern,m.

Lemma 8.5. Let V be an affine algebraic k-set and f ∈ O(V ). Then the set

D(f) = {x ∈ V : f(x) 6= 0}

is affine and
O(D(f)) ∼= O(V )f .

Proof. Replacing V by an isomorphic algebraic k-set, we may assume that V = X(K),
where X ⊂ Kn is an affine algebraic k-variety defined by an ideal I. Let F ∈
k[Z1, . . . , Zn] be a polynomial representing f . Consider the closed subset of Kn+1 =
Kn ×K defined by the equation FZn+1 − 1 = 0 and let V ′ be its intersection with
the closed subset V ×K. It is an affine algebraic k-set. We have

O(V ′) = k[Z1, . . . , Zn, Zn+1]/(I, FZn+1 − 1) ∼= k[Z1, . . . , Zn]/(I)[
1

f
] = O(V )f .

Let p : Kn+1 → Kn be the projection. I claim that the restriction of p to V ′ defines
an isomorphism p′ : V ′ → D(f). It is obviously a regular map, since it is defined
by the polynomials (Z1, . . . , Zn). The inverse map p−1 : V → V ′ is defined by the
map x 7→ (x, 1

f(x)). Let us see that it is a regular map. Let P (T0, . . . , Tn) be a

homogenization of F , i.e., F = P
T d
0

for some d > 0. We view V ′ as a closed subset

of Pn+1(K)0 and D(f) as a locally closed subset of Pnk(K)0. Obviously, the map p−1

coincides with the map

x = (1, x1, . . . , xn) 7→ (PT0(x), PT1(x), . . . , PTn(x), T d+1
0 (x)) = (1, x1, . . . , xn,

1

f(x)
).

defined by homogeneous polynomials (PT0, PT1, . . . , PTn, T
d+1
0 ) of degree d+1.
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Theorem 8.6. Let V be a quasi-projective k-set and x ∈ V . Then there exists an
open subset U ⊂ V containing x which is an affine quasi-projective set.

Proof. Let V = Z1 \ Z2, where Z1, Z2 are closed subsets of Pnk(K). Obviously,
x ∈ Pn(K)i for some i. Thus x belongs to (Z1 ∩ Pn(K)i) \ (Z2 ∩ Pn(K)i). The
subsets Z1 ∩ Pn(K)i and Z2 ∩ Pn(K)i are closed subsets of Kn. Let F be a regular
function on Kn which vanishes on Z2 ∩ Pn(K)i but does not vanish at x. Then its
restriction to V ∩(Z1∩Pn(K)i) defines a regular function f ∈ O(V ∩Pn(K)i) such that
x ∈ D(f) ⊂ V ∩ Pn(K)i. By the previous lemma, D(f) is an affine quasi-projective
k-set.

Corollary 8.7. The set of open affine quasi-projective sets form a basis in the Zariski
topology of Pn(K).

Recall that a basis of a topological space X is a family F of open subsets such that
for any x ∈ X and any open U containing x there exists V ∈ F such that x ∈ V ⊂ U .
We shall prove in the next lecture that the intersection of two open affine sets is an
open affine set. This implies that the Zariski topology can be reconstructed from the
set of affine open sets.

Remark 8.8. The reader who is familiar with the notion of a manifold (real or complex)
will easily notice the importance of the previous theorem. It shows that the notion of
a quasi-projective algebraic set is very similar to the notion of a manifold. A quasi-
projective algebraic set is a topological space which is locally homeomorphic to a
special topological space, an affine algebraic set.

Proposition 8.9. Every quasi-projective algebraic k-set V is a quasi-compact topo-
logical space.

Proof. Recall that a topological space V (not necessarily separated) is said to be
quasi-compact if every its open covering {Ui}i∈I contains a finite subcovering, i.e.

V = ∪i∈IUi =⇒ V = ∪i∈JUi,

where J is a finite subset of I.
Every Noetherian space is quasi-compact. Indeed, in the above notation we form

a decreasing sequence of closed subsets

V \ Ui1 ⊃ V \ (Ui1 ∪ Ui2) ⊃ . . .

which must stabilize with a set V ′ = V \ (Ui1 ∪ . . . ∪ Uir). If it is not empty, we can
subtract one more subset Uij to decrease V ′. Therefore, V ′ = ∅ and V = Ui1∪. . .∪Uir .
Thus, it suffices to show that a quasi-projective set is Noetherian. But obviously it
suffices to verify that its closure is Noetherian. This is checked similarly to that as in
the affine case by applying Hilbert’s Basis Theorem.
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Corollary 8.10. Every algebraic set can be written uniquely as the union of finitely
many irreducible subspaces Zi, such that Zi 6⊂ Zj for any i 6= j.

Lemma 8.11. Let V be a topological space and Z be its subspace. Then Z is
irreducible if and only if its closure Z̄ is irreducible.

Proof. Obviously, follows from the definition.

Proposition 8.12. A subspace Z of Pnk(K) is irreducible if and only if the radical
homogeneous ideal defining the closure of Z is prime.

Proof. By the previous lemma, we may assume that Z is closed. Then Z is a projective
algebraic set defined by its radical homogeneous ideal. The assertion is proven similarly
to the analogous assertion for an affine algebraic set. We leave the proof to the
reader.

Problems.

1. Is the set {(a, b, c) ∈ P2(K) : a 6= 0, b 6= 0} ∪ {(1, 0, 0)} quasi-projective?

2. Let V be a quasi-projective algebraic set in Pn(K),W be a quasi-projective algebraic
set in Pr(K). Prove that sn,m(K)(V ×W ) is a quasi-projective algebraic subset of
Segn,m(K) = sn,m(K)(Pn(K)× Pr(K)) ⊂ P(n+1)(m+1)−1(K).

3. Let us identify the product V × W ⊂ Pn(K) × Pr(K) of two quasi-projective
algebraic k-sets with a quasi-projective algebraic k-subset of the Segre set Segn,m(K).
Let f : V → V ′ and g : W → W ′ be two regular maps. Show that the map
f × g : V ×W → V ′ ×W ′ is a regular map.

4. Is the union (resp. the intersection) of quasi-projective algebraic sets a quasi-
projective algebraic set?

5. Find the irreducible components of the projective subset of P3(K) given by the
equations: T2T0 − T 2

1 = 0, T1T3 − T 2
2 = 0.

6. Show that every irreducible component of a projective hypersurface V (F ) = {a ∈
Pn(K) : F (a) = 0} is a hypersurface V (G), where G is an irreducible factor of the
homogeneous polynomial F (T ).

7. Describe explicitly (by equations) a closed subset of some Kn which is isomorphic
to the complement to a conic T0T1 + T 2

2 = 0 in P2(K).

8. Prove that a regular map is a continuous map and that the composition of regular
maps is a regular map.
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Lecture 9

The image of a projective
algebraic set

Let f : V → W be a regular map of quasi-projective k-sets. We are interested in its
image f(V ). Is it a quasi-projective algebraic set? For instance, let f : K2 → K2 be
given by (x, y) 7→ (x, xy). Then its image is the union of the set U = {(a, b) ∈ K2 :
a 6= 0} and the closed subset Z = {(0, 0)}. The complement of a a locally closed
subset is equal to the union of an open a closed set. If the open part is not empty,
then closure must be equal to K2. The complement of f(K2) is equal to the set of
points (0, y), y 6= 0. Obviously, its closure is the line y = 0 and it does not contain
any open subsets of Kn. Thus f(A2

k(K)) is not locally closed in A2
k(K). Since K2

is an open subset of P2
k(K), f(A2

k(K)) is not locally closed in P2
k(K), i.e., it is not a

quasi-projective algebraic set.
However, the situation is much better in the case where V is a projective set. We

will prove the following result:

Theorem 9.1. The image of a projective algebraic k-set V under a regular map
f : V →W is a closed subset of W in the Zariski k-topology.

To prove this theorem we note first that

f(V ) = pr2(Γf )

where
Γf = {(x, y) ∈ V ×W : y = f(x)}

is the graph of f , and pr2 : V ×W → W, (x, y) 7→ y is the projection map. We will
always consider the product V ×W as a quasi-projective set by embedding it into a
projective space by the Segre map. In particular, V ×W is a topological space with
respect to the Zariski topology.
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Our theorem follows from the following two results:

Proposition 9.2. The graph Γf of a regular map f : V → W is a closed subset of
V ×W .

Theorem 9.3. (Chevalley). Let V be a projective algebraic k-set, W be a quasi-
projective algebraic k-set and Z be a closed subset of V ×W . Then pr2(Z) is closed
in W .

Let us first prove the proposition. The proof is based on the following simple
observations:

(i) If W ⊂ W ′ and f ′ : V → W ′ is the composition of f and the inclusion map,
then Γf = (V ×W ) ∩ Γf ′ . Thus, the closeness of Γf ′ in V ×W ′ implies the
closeness of Γf .

(ii) If f : V → W and f ′ : V ′ → W ′ are two regular maps, then the map f × f ′ :
V ×W → V ′ ×W ′, (x, x′) 7→ (f(x), f ′(y)) is a regular map (Problem 4 from
Lecture 8).

(iii) If ∆W = {(y, y′) ∈ W × W : y = y′} (the diagonal of W ), then Γf =
(f × idW )−1(∆W ).

By (ii), f × idW : V ×W → W ×W is continuous. Thus it suffices to check that
∆W ⊂ W ×W is closed. By (i) we may assume that W = Pnk(K). However, the
diagonal ∆Pn

k (K) ⊂ Pnk(K)× Pnk(K) is given by the system of equations:

Tij − Tji = 0, i, j = 0, . . . , n, TijTrt − TitTrj = 0, i, j, r, t = 0, . . . , n.

in coordinates Tij of the space containing the image of Pnk(K) × Pnk(K) under the
Segre map sn,n(K). This proves Proposition 9.2.

Remark 9.4. . It is known from general topology that the closeness of the diagonal of
a topological space X is equivalent to the Hausdorff separateness of X. Since we know
that algebraic sets are usually not separated topological spaces, Proposition 9.2 seems
to be contradictory. To resolve this paradox we observe that the Zariski topology of
the product V ×W is not the product of topologies of the factors.
One should also compare the assertion of Theorem 9.3 with the definition of a perfect
map of topological spaces. According to this definition (see N. Bourbaki, General
Topology, Chapter 1, §11), the assertion of the theorem implies that the constant map
X → {point} is perfect. Corollary 9.6 to Theorem 9.1 from loc. cit. says that this is
equivalent to that X is quasi-compact. Since we know that X is quasi-compact always
(projective or not projective), this seems to be a contradiction again. The explanation
is the same as above. The Zariski topology of the product is not the product topology.
Nevertheless, we should consider the assertion of Theorem 9.3 as the assertion about
the “compactness” of a projective algebraic set.
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To prove Theorem 9.3 we need the following:

Lemma 9.5. Let V be a closed subset of Pnk(K)×Pmk (K) (resp. of Pnk(K)×Amk (K)).
Then V is the set of zeroes of polynomials Ps(T, T

′) ∈ k[T0, . . . , Tn, T
′
0, . . . , T

′
m],

s ∈ S, which are homogeneous of degree d(s) in variables T0, . . . , Tn and homoge-
neous of degree d(s)′ in the variables T ′0, . . . , T

′
m (resp. V is the set of zeroes of

polynomials Ps(T0, . . . , Tn, Z
′
1, . . . , Z

′
m) ∈ k[T0, , . . . , Tn, Z

′
1, . . . , Z

′
m], s ∈ S, which

are homogeneous of degree d(s) in variables T0, . . . , Tn). Conversely, every subset of
Pnk(K)× Pmk (K) (resp. of Pnk(K)×Amk (K)) defined in this way is a closed subset in
the Zariski k-topology of the product.

Proof. It is enough to prove the first statement. The second one will follow from
the first one by taking the closure of V in Pnk(K) × Pmk (K) and then applying the
dehomogenization process in the variable T ′0. Now we know that V is given by a system

of homogeneous polynomials in variables Tij in the space P(n+1)(m+1)−1
k and the system

of equations defining the Segre set Segn,m(K). Using the substitution Tij = TiT
′
j ,

we see that V can be given by a system of equations in T0, . . . , Tn, T
′
0, . . . , T

′
m which

are homogeneous in each set of variables of the same degree. If we have a system
of polynomials Ps(T0, . . . , Tn, T

′
0, . . . , T

′
m) which are homogeneous of degree d(s) in

variables T0, . . . , Tn and homogeneous of degree d(s)′ in variables T ′0, . . . , T
′
m, its set

of solutions in Pnk(K)× Pmk (K) is also given by the system in which we replace each

Ps by T
′d(s)−d(s)′

i Ps, i = 0, . . . ,m, if d(s) > d(s)′ and by T
d(s)′−d(s)
i Ps, i = 0, . . . , n,

if d(s) < d(s)′. Then the enlarged system arises from a system of polynomials in Tij
after substitution Tij = TiT

′
j .

Now let us prove Theorem 9.3. Let V be a closed subset of Pnk(K). Then
Z ⊂ V ×W is a closed subset of Pn(K)×W and pr2(Z) equals the image of Z under
the projection Pnk(K)×W →W . Thus we may assume that V = Pnk(K).

Let W = ∪i∈IUi be a finite affine covering of W (i.e. a covering by open affine
sets). Then V ×W = ∪i∈I(V ×Ui), Z = ∪i∈IZ∩(V ×Ui) and pr2(Z) = ∪i∈Ipr2(Z∩
(V × Ui)). This shows that it suffices to check that pr2(Z) ∩ (V × Ui) is closed in
Ui. Thus we may assume that W = Ui is affine. Then W is isomorphic to a closed
subset of some Amk (K), V ×W is closed in V × Amk (K) and pr2(Z) is equal to the
image of Z under the second projection V × Amk → Amk . Thus we may assume that
W = Amk (K) and V = Pnk(K).

Let Z be a closed subset of Pnk(K)×Amk (K). By Lemma 9.5, Z can be given by
a system of equations

Fi(T0, . . . , Tn, t1, . . . , tm) = 0, i = 1, . . . , N.

where Fi ∈ k[T0, . . . , Tn, t1, . . . , tm] is a homogeneous of degree d(i) in variables
T0, . . . , Tn. For every a = (a1, . . . , am) ∈ Km, we denote by Xa the projective
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algebraic subset of Pn(K) defined by the system of homogeneous equations:

Fi(T0, . . . , Tn, a1, . . . , am) = 0, i = 1, . . . , N.

It is clear that Xa = ∅ if and only if (0, . . . , 0) is the only solution of this system in
Kn+1. By Nullstellensatz, this happens if only if the radical of the ideal Ia generated by
the polynomials Fi(T, a1, . . . , am) is equal to (T0, . . . , Tn). This of course equivalent
to the property that (T0, . . . , Tn)s ⊂ Ia for some s ≥ 0.

Now we observe that

pr2(Z) = {a ∈ Km : Xa 6= ∅} = {a ∈ Km : (T0, . . . , Tn)s 6⊂ Ia for any s ≥ 0}

= ∩s≥0{a ∈ Km : (T0, . . . , Tn)s 6⊂ Ia}.

Thus it suffices to show that each set Ys = {a ∈ Km : (T0, . . . , Tn)s 6⊂ Ia} is
closed in the Zariski k-topology. Note that (T0, . . . , Tn)s ⊂ Ia means that every
homogeneous polynomial of degree s can be written as

∑
i, Fi(T, a)Qi(T )) for some

Qi(T ) ∈ k[T ]s−d(i), where d(i) = degFi(T, a). Consider the linear map of linear
k-spaces

φ :

N⊕
i=1

k[T ]s−d(i) → k[T ]s, (Q1, . . . , QN ) 7→
∑
i

Fi(T, a)Qi(T )).

This map is surjective if and only if a ∈ Km \ Ys. Thus, a ∈ Ys if and only if
rank(φ) < d = dimk[T ]s. The latter condition can be expressed by the equality to
zero of all minors of order d in any matrix representing the linear map φ. However,
the coefficients of such a matrix (for example, with respect to a basis formed by
monomials) are polynomials in a1, . . . , an with coefficients from k. Thus, every minor
is also a polynomial in a. The set of zeros of these polynomials defines the closed
subset Ys in the Zariski k-topology. This proves Theorem 9.3.

Recall that a topological space X is said to be connected if X 6= X1 ∪X2 where
X1 and X2 are proper open (equivalently, closed) subsets with empty intersection.
One defines naturally the notion of a connected component of V and shows that V
is the union of finitely many connected components. Clearly, an irreducible space
is always connected, but the converse is false in general. For every quasi-projective
algebraic k-set V we denote by π0(V ) the set of its connected components. Let π̄0(V )
denote the set of connected components of the corresponding K-set. Both of these
sets are finite since any irreducible component of V is obviously connected. We say
that V is geometrically connected if #π̄0(V ) = 1. Notice the difference between
connectedness and geometric connectedness. For example, the number of connected
components of the affine algebraic k-subset of A1

k defined by a non-constant non-
zero polynomial F (Z) ∈ k[Z] equals the number of irreducible factors of F (Z). The
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number of connected components of the corresponding K-set equals the number of
distinct roots of F (Z) in K.

Corollary 9.6. Assume k is a perfect field. Let V be a projective algebraic k-set,
n = #π0(V ). Then there is an isomorphism of k-algebras O(V ) ∼= k1 ⊕ . . . ⊕ kn
where each ki is a finite field extension of k. Moreover

n∑
i

[ki : k] = #π̄0(V ).

In particular, if V is connected as an algebraic K-set, O(V ) = K.

Proof. Let V1, . . . , Vn be connected components of V . It is clear thatO(V ) ∼= O(V1)⊕
. . .⊕O(Vn) so we may assume that V is connected. Let f ∈ O(V ). It defines a regular
map f : V → A1(K). Composing it with the inclusion A1(K) ↪→ P1

k(K), we obtain
a regular map f ′ : V → P1

k(K). By Theorem 9.1, f(V ) = f ′(V ) is closed in P1
k(K).

Since f(V ) ⊂ A1
k(K), it is a proper closed subset, hence finite. Since V is connected,

f(V ) must be connected (otherwise the pre-image of a connected component of f(V )
is a connected component of V ). Hence f(V ) = {a1, . . . , ar} ⊂ K is the set of
roots of an irreducible polynomial with coefficients in k. It is clear that ai 6= 0 unless
f(V ) = {0} hence f = 0. This implies that f(x) 6= 0 for any x ∈ V . If f is given
by a pair of homogeneous polynomials (P,Q) then f−1 is given by the pair (Q,P )
and belongs to O(V ). Therefore O(V ) is a field. Assume k = K, then the previous
argument shows that r = 1 and f(x) = a1 for all x ∈ V , i.e., O(V ) = k. Thus
if V̄ denotes the set V considered as a K-set, we have shown that O(V̄ ) ∼= Km

where m = #π̄0(V ) = #π0(V̄ ). But obviously O(V̄ ) = O(V ) ⊗k K ∼= Kd where
d = [O(V ) : k]. Here we again use that O(V ) is a separable extension of k. This
shows that m = [O(V ) : k] and proves the assertion.

Corollary 9.7. Let Z be a closed connected subset of Pnk(K). Suppose Z is contained
in an affine subset U of Pnk(K). Then the ideal of O(U) of functions vanishing on Z
is a maximal ideal. In particular, Z is one point if k is algebraically closed.

Proof. Obviously, Z is closed in U , hence is an affine algebraic k-set. We know that
O(Z) = k′ is a finite field extension of k. The kernel of the restriction homomorphism
resU/Z : O(U) → O(Z) = k′ is a maximal ideal in O(U). In fact if A is a subring
of k′ containing k it must be a field (every nonzero x ∈ A satisfies an equation
xn + a1x

n−1 + . . . + an−1x + an = 0 with an 6= 0, hence x(xn−1 + a1x
n−2 + . . . +

an−1)(−a−1
n ) = 1). This shows that Z does not contain proper closed subsets in the

Zariski k-topology. If k is algebraically closed, all points are closed, hence Z must be
a singleton.
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Corollary 9.8. Let f : V → W be a regular map of a connected projective algebraic
set to an affine algebraic set. Then f is a constant map.

Proof. We may assume that k = K since we are talking about algebraic K-sets. Let
W ⊂ Pn(K)0 ⊂ Pn(K) for some n, and f ′ : V → Pn(K) be the composition of f
and the natural inclusion W ↪→ Pn(K). By Theorem 9.1, f(V ) = f ′(V ) is a closed
connected subset of Pn(K) contained in an affine set (the image of a connected set
under a continuous map is always connected). By Corollary 9.7, f(V ) must be a
singleton.

Problems.

1. Let K[T0, . . . , Tn]d be the space of homogeneous polynomials of degree d with
coefficients in an algebraically closed field K. Prove that the subset of reducible
polynomials is a closed subset of K[T0, . . . , Tn]d where the latter is considered as
affine space AN (K), N =

(
n+d
d

)
. Find its equation when n = d = 2.

2. Prove that Kn \ {a point} or Pn(K) \ {point} is not an affine algebraic set if
n > 1, also is not isomorphic to a projective algebraic set.

3. Prove that the intersection of open affine subsets of a quasi-projective algebraic set
is affine [Hint: Use that for any two subsets A and B of a set S,A∩B = ∆S∩(A×B)
where the diagonal ∆S is identified with S].

4. Let X ⊂ Pn be a connected projective algebraic set other than a point and Y is a
projective set defined by one homogeneous polynomial. Show that X ∩ Y 6= ∅.
5. Let f : X → Z and g : Y → Z be two regular maps of quasi-projective algebraic
sets. Define X ×Z Y as the subset of X × Y whose points are pairs (x, y) such that
f(x) = g(y). Show that X×Z Y is a quasi-projective set. A map f : X → Z is called
proper if for any map g : Y → Z and any closed subset W of X ×Z Y the image of
W under the second projection X × Y → Y is closed. Show that f is always proper
if X is a projective algebraic set.



Lecture 10

Finite regular maps

The notion of a finite regular map of algebraic sets generalizes the notion of a finite
extension of fields. Recall that an extension of fields F → E is called finite if E is
a finite-dimensional vector space over F . This is easy to generalize. We say that an
injective homomorphism φ : A→ B of commutative rings is finite if B considered as
a module over A via the homomorphism φ is finitely generated. What is the geometric
meaning of this definition? Recall that a finite extension of fields is an algebraic
extension. This means that any element in E satisfies an algebraic equation with
coefficients in F . The converse is also true provided E is finitely generated over F as
a field. We shall prove in the next lemma that a finite extension of rings has a similar
property: any element in B satisfies an algebraic equation with coefficients in φ(A).
Also the converse is true if we additionally require that B is a finitely generated algebra
over A and every element satisfies a monic equation (i.e. with the highest coefficient
equal to 1) with coefficients in φ(A).

Let us explain the geometric meaning of the additional assumption that the equa-
tions are monic. Recall that an algebraic extension E/F has the following property.
Let y : F → K be a homomorphism of F to an algebraically closed field K. Then
y extends to a homomorphism of fields x : E → K. Moreover, the number of these
extensions is finite and is equal to the separable degree [E : F ]s of the extension
E/F . An analog of this property for ring extensions must be the following. For any
algebraically closed field K which has a structure of a A-algebra via a homomorphism
y : A → K (this is our analog of an extension K/F ) there a non-empty finite set of
homomorphisms xi : B → K such that xi ◦ φ = y. Let us interpret this geometrically
in the case when φ is a homomorphism of finitely generated k-algebras. Let X and Y
be afiine algebraic k-varieties such that O(X) ∼= B, O(Y ) ∼= A. The homomorphism
φ defines a morphism f : X → Y such that φ = f∗. A homomorphism y : A→ K is
a K-point of Y . A homomorphism yi : B → K such that xi ◦ φ = y is a K-point of
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X such that fK(xi) = y. Thus the analog of the extension property is the property
that the map X(K) → Y (K) is surjective and has finite fibres. Let B is generated
over A by one element b satisfying an algebraic equation

a0x
n + a1x

n−1 + . . .+ an = 0

with coefficients in A. Assume the ideal I = (a0, . . . , an−1) is proper but an is
invertible in A. Let m be a maximal ideal in A containing I. Let K be an algebraically
closed field containing the residue field A/m. Consider the K-point of Y corresponding
to the homomorphism y : A→ A/m→ K. Since B ∼= A[x]/(a0x

n + a1x
n−1 + . . .+

an), any homomorphism extending y must send an to zero but this is impossible since
an is invertible. Other bad thing may happen if an ∈ I. Then we obtain infinitely
many extensions of y, they are defined by sending x to any element in K. It turns out
that requiring that a0 is invertible will guarantee that X(K) → Y (K) is surjective
with finite fibres.

We start with reviewing some facts from commutative algebra.

Definition 10.1. A commutative algebra B over a commutative ring A is said to be
integral over A if every element x ∈ B is integral over A (i.e. satisfies an equation
xn + a1x

n−1 + . . .+ an = 0 with ai ∈ A).

Lemma 10.1. Assume that B is a finitely generated A-algebra. Then B is integral
over A if and only if B is a finitely generated module over A.

Proof. Assume B is integral over A. Let x1, . . . , xn be generators of B as an A-algebra
(i.e., for any b ∈ B there exists F ∈ A[Z1, . . . , Zn] such that b = F (x1, . . . , xn)).

Since each xi is integral over A, there exists some integer n(i) such that x
n(i)
i can be

written as a linear combination of lower powers of xi with coefficients in A. Hence
every power of xi can be expressed as a linear combination of powers of xi of degree
less than n(i). Thus there exists a number N > 0 such that every b ∈ B can be
written as a polynomial in x1, . . . , xn of degree < N . This shows that a finite set of
monomials in x1, . . . , xn generate B as an A-module.

Conversely, assume that B is a finitely generated A-module. Then every b ∈ B
can be written as a linear combination b = a1b1 + . . . + arbr, where b1, . . . , br is a
fixed set of elements in B and ai ∈ A. Multiplying the both sides by bi and expressing
each product bibj as a linear combination of bi’s we get

bbi =
∑
j

aijbi, aij ∈ A. (10.1)

This shows that the vector b = (b1, . . . , br) satisfies the linear equation (M−bIn)b =
0, where M = (aij). Let D = det(M − bIn). Applying Cramer’s rule, we obtain that
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Dbi = 0, i = 1, . . . , n. Using (10.1) we see that Dx = 0 for all x ∈ B. In particular,
D ·D = D2 = 0. It remains to use that the equation D2 = 0 is a monic equation for
b with coefficients in A.

This Lemma implies the following result which we promised to prove in Lecture 2:

Corollary 10.2. Let B be an A-algebra. The set of elements in B which are integral
over A is a subring of B (it is called the integral closure of A in B).

Proof. Let b, b′ ∈ B be integral over A. Consider the A-subalgebra A[b, b′] of B
generated by these elements. Since b is integral over A, it satisfies an equation bn +
a1b

n−1 + . . . + an, ai ∈ A, hence A[b] is a finitely generated A-module generated by
1, . . . , bn−1. Similarly, since b′ is integral over A, hence over A[b], we get A[b, b′] =
A[b][b′] is a finitely generated A[b]-module. But then A[b, b′] is a finitely generated
A-module. By Lemma 10.1, A[b, b′] is integral over A. This checks that b + b′, b · b′
are integral over A.

Lemma 10.3. Let B be integral over its subring A. The following assertions are true:

(i) if A is a field and B is without zero divisors, then B is a field;

(ii) if I is an ideal of B such that I ∩A = {0} and B is without zero divisors then
I = {0};

(iii) if P1 ⊂ P2 are two ideals of B with P1 ∩ A = P2 ∩ A and P1 is prime, then
P1 = P2;

(iv) if S is a multiplicatively closed subset of A, then the natural homomorphism
AS → BS makes BS an integral algebra over AS ;

(v) if I is a proper ideal of A then the ideal IB of B generated by I is proper;

(vi) for every prime ideal P in A there exists a prime ideal P ′ of B such that
P ′ ∩A = P.

Proof. (i) Every x satisfies an equation xn + a1x
n−1 + . . . + an = 0 with ai ∈

A. Since B has no zero divisors, we may assume that an 6= 0 if x 6= 0. Then
x(xn−1 + a1x

n−2 + . . .+ an−1)(−a−1
n ) = 1. Hence x is invertible.

(ii) As in (i), we may assume that every nonzero x ∈ I satisfies an equation
xn+a1x

n−1 + . . .+an = 0 with ai ∈ A and an 6= 0. Then an = −x(xn−1 +a1x
n−2 +

. . . + an−1) ∈ I ∩ A. Since I ∩ A = {0}, we obtain an = 0. Thus I has no nonzero
elements.

(iii) Let P0 = P1 ∩ A. Then we may identify Ā = A/P0 with a subring of
B̄ = B/P1 with respect to the natural homomorphism A/P0 → B/P1. Let P ′2 be the
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image of P2 in B̄. Then P ′2 ∩ Ā = {0}. Obviously, B̄ is integral over Ā and has no
zero divisors. Thus we may apply (ii) to obtain P ′2 = {0} hence P2 = P1.

(iv) Obviously, the map AS → BS is injective, so we may identify AS with a subring
of BS . If b/s ∈ BS and b satisfies a monic equation bn+a1b

n−1+. . .+an = 0, ai ∈ A,
then b/s satisfies the monic equation (b/s)n + (a1/s)(b/s)

n−1 + . . . + (an/s
n) = 0

with coefficients in AS .
(v) If IB = B, then we can write 1 = a1b1 + . . .+ anbn for some bi ∈ B, ai ∈ I.

Let x1, . . . , xm be a set of generators of B considered as A-module. Multiplying both
sides of the previous equality xi and expressing xibj as a linear combination of the xi’s
with coefficients in A we can write

xi =

n∑
j=1

aijxj , i = 1, . . . , n for some aij ∈ I.

Thus, the vector x = (x1, . . . , xn) ∈ Bn is a solution of a system of linear equations
(M − In)x = 0 where M = (aij). Let D = det(M − Ik). As in the proof of Lemma
10.1, we get D2 = 0. Clearly

D = det(M − Ik) = (−1)k + c1(−1)k−1 + . . .+ ck

where ci, being polynomials in aij , belong to I. Squaring the previous equality, we
express 1 as a linear combination of the products cicj . This shows that 1 ∈ I. This
contradiction proves the assertion.

(vi) We know that the ideal

P ′ = PAP = {a/b ∈ AP , a ∈ P}

is maximal in AP . In fact, any element from its complement is obviously invertible.
Let B′ = BS , where S = A \ P. Then B′ is integral over A′ = AP and, by (v),
the ideal P ′B′ is proper. Let m be a maximal ideal containing it. Then m ∩ A′ = P ′
because it contains the maximal ideal P ′. Now it is easy to see that the pre-image of
m under the canonical homomorphism B → BS is a prime ideal of B cutting out the
ideal P in A.

Definition 10.2. A regular map f : X → Y of affine algebraic k-sets is said to be
finite if f∗ : O(Y ) → O(X) is injective and O(X) is integral over f∗(O(Y )). A
regular map f : X → Y of quasi-projective algebraic k-sets is said to be finite if for
every point y ∈ Y there exists an affine open neighborhood V of y such that f−1(V )
is affine and the restriction map f−1(V )→ V is finite.

Note that if f : X → Y is a map of affine sets, then f∗ : O(Y ) → O(X) is
injective if and only if f(X) is dense in Y . Indeed, if f∗(φ) = 0 then f(X) ⊂ {y ∈
Y : φ(y) = 0} which is a closed subset. Conversely, if f(X) is contained in a closed
subset Z of Y then for every function φ ∈ I(Z) we have f∗(φ) = 0.
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Example 10.4. 1. Let X = {(x, y) ∈ K2 : y = x2} ⊂ A2(K) and Y = A1(K).
Consider the projection map f : X → Y, (x, y) 7→ y. Then f is finite. Indeed, O(X) ∼=
k[Z1, Z2]/(Z2−Z2

1 ),O(Y ) ∼= k[Z2] and f∗ is the composition of the natural inclusion
k[Z2]→ k[Z1, Z2] and the natural homomorphism k[Z1, Z2]→ k[Z1, Z2]/(Z2 − Z2

1 ).
Obviously, it is injective. Let z1, z2 be the images of Z1 and Z2 in the factor ring
k[Z1, Z2]/(Z2 − Z2

1 ). Then O(X) is generated over f∗(O(Y )) by one element z1.
The latter satisfies a monic equation: z2

1 − f∗(Z2) = 0 with coefficients in f∗(O(Y )).
As we saw in the proof of Lemma 10.1, this implies that O(X) is a finitely generated
f∗(O(Y ))-module and hence O(X) is integral over f∗(O(Y )). Therefore f is a finite
map.
2. Let x0 be a projective subspace of Pnk(K) of dimension 0, i.e., a point (a0, . . . , an)
with coordinates in k. Let X be a projective algebraic k-set in Pnk(K) with x0 6∈ X
and let f = prx0 : X → Pn−1

k (K) be the projection map. We know that Y = f(X)
is a projective set. Let us see that f : X → Y is finite. First, by a variable change,
we may assume that x0 is given by a system of equations T0 = . . . = Tn−1 = 0
where T0, . . . , Tn are homogeneous coordinates. Then f is given by (x0, . . . , xn) 7→
(x0, . . . , xn−1). We may assume that y ∈ Y lies in the open subset V = Y ∩Pn−1

k (K)0

where x0 6= 0. Its preimage U = f−1(V ) = X ∩ Pnk(K)0. Since f is surjective
f∗ : O(V ) → O(U) is injective. Let us show that O(U) is integral over f∗(O(V )).
Let I0 ⊂ k[Z1, . . . , Zn] be the ideal of X ∩ Pnk(k)0, where Zi = Ti/T0, i = 1, . . . , n.
Then V is given by some ideal J0 in k[Z1, . . . , Zn−1], and the homomorphism f∗

is induced by the natural inclusion k[Z1, . . . , Zn−1] ⊂ k[Z1, . . . , Zn]. Since O(U) is
generated over k by the cosets zj of Zj modulo the ideal I0 we may take zn to be
a generator of O(U) over f∗(O(V )). Let {Fs(T ) = 0}s∈S be the equations defining
X. Since x0 6∈ X, the ideal generated by the polynomials Fs and Ti, i ≤ n− 1, must
contain k[T ]d for some d ≥ 0. Thus we can write

T dn =
∑
s∈S

AsFs +

n−1∑
i=0

BiTi

for some homogeneous polynomials As, Bi ∈ k[T0, . . . , Tn]. Obviously, the degree of
each Bi in Tn is strictly less than d. Dividing by some T i0, i < d, and reducing modulo
I0 we obtain that zn satisfies a monic equation with coefficients in f∗(O(V )). This
implies that O(V ) is a finitely generated f∗(O(U))-module, hence is integral over
f∗(O(U)). By definition, X is finite over Y .
3. Let A = k[Z1] and B = A[Z1, Z2]/Z1Z2 − 1. Consider φ : A → B defined by
the natural inclusion k[Z1] ⊂ k[Z1, Z2]. This corresponds to the projection of the
‘hyperbola’ to the x-axis. It is clearly not surjective. Thus property (v) is not satisfied
(take I = (Z1)). So, the corresponding map of affine sets is not finite (although all
fibres are finite sets).
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Lemma 10.5. Let X be a quasi-projective algebraic k-set, φ ∈ O(X) and D(φ) =
{x ∈ X : φ(x) 6= 0}. Then

O(D(φ)) ∼= O(X)φ.

Proof. We know that this is true for an affine set X (see Lecture 8). Let X be
any quasi-projective algebraic k-set. Obviously, for any open affine set U we have
D(φ|U) = U ∩ D(φ). This shows that φ|U ∩ D(φ) is invertible, and by taking an
affine open cover of D(φ), we conclude that φ|D(φ) is invertible. By the universal
property of localization, this defines a homomorphism α : O(X)φ → O(D(φ)). The re-
striction homomorphism O(X)→ O(U) induces the homomorphism αU : O(U)φ|U →
O(D(φ) ∩ U). By taking an affine open cover of X = ∪iUi, we obtain that all αUi

are isomorphisms. Since every element of O(X) is uniquely determined by its restric-
tions to each Ui, and any element of O(D(φ)) is determined by its restriction to each
D(φ) ∩ Ui, we obtain that α is an isomorphism.

Lemma 10.6. Let X and Y be two quasi-projective algebraic k-sets. Assume that Y
is affine. Then the natural map

Mapreg(X,Y )→ Homk−alg(O(Y ),O(X)), f → f∗,

is bijective.

Proof. We know this already if X and Y are both affine. Let U be an affine open
subset of X. By restriction of maps (resp. functions), we obtain a commutative
diagram:

Mapreg(X,Y ) //

��

Homk−alg(O(Y ),O(X))

��
Mapreg(U, Y ) // Homk−alg(O(Y ),O(U)).

Here the bottom horizontal arrow is a bijection. Thus we can invert the upper horizon-
tal arrow as follows. Pick up an open affine cover {Ui}i∈I of X. Take a homomorphism
φ : O(Y )→ O(X), its image in Homk−alg(O(Y ),O(Ui)) is the composition with the
restriction map O(X) → O(Ui). It defines a regular map Ui → Y . Since a regular
map is defined on its open cover, we can reconstruct a “global” map X → Y . It is
easy to see that this is the needed inverse.

Lemma 10.7. Let X be a quasi-projective algebraic k-set. Then X is affine if and
only if O(X) is a finitely generated k-algebra which contains a finite set of elements
φi which generate the unit ideal and such that each D(φi) is affine.
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Proof. The part ‘only if’ is obvious. Let φ1, . . . , φn ∈ O(X) which generate the unit
ideal. Then X = ∪iD(φi). Let k[Z1, . . . , Zn]→ O(X) be a surjective homomorphism
of k-algebras and I be its kernel. The set of zeroes of I in An(K) is an affine algebraic
set X ′ with O(X ′) ∼= O(X). Let f : X → X ′ be the regular map corresponding by
Lemma 10.6 to the previous isomorphism. Its restriction to D(φi) is an isomorphism
for each i (here we use that D(φi) is affine). Hence f is an isomorphism.

Proposition 10.8. Let f : X → Y be a finite regular map of quasi-projective algebraic
k-sets. The following assertions are true:

(i) for every affine open subset U of Y, f−1(U) is affine and f : f−1(U) → U is
finite;

(ii) if Z is a locally closed subset of Y , then f : f−1(Z)→ Z is finite;

(iii) if f : X → Y and g : Y → Z are finite regular maps, then g ◦ f : X → Z is a
finite regular map.

Proof. (i) Obviously, we may assume that Y = U is affine. For any y ∈ Y , there exists
an open affine neighborhood V of y such that f : f−1(V ) → V is a finite map of
affine k-sets. Let φ ∈ O(V ), then D(φ) ⊂ V is affine and f−1(D(φ)) = D(f∗(φ)) ⊂
f−1(V ) is affine. Moreover, the map f−1(D(φ)) → D(φ) is finite (this follows from
Lemma 10.3 (iv) and Lemma 10.5). Thus we may assume that Y is covered by affine
open sets of the form D(φ) such that f−1(D(φ)) is affine and the restriction of the
map f to f−1(D(φ)) is finite.

Now let
Y = ∪iVi, Vi = D(φi), φi ∈ O(Y ),

X = ∪iUi, Ui = f−1(Vi) = D(f∗(φi)),

fi = f |Ui : Ui → Vi is a finite map of affine sets.

By Lemma 10.1, O(Ui) is a finitely generated O(Vi)-module. Let {ωij}j=1,...,n(i) be
a set of generators of this module. Since ωij = a/f∗(φi)

n for some a ∈ O(X) and
n ≥ 0, and f∗(φi) is invertible in O(Ui), we may assume that ωij ∈ O(X). For every
φ ∈ O(X) we may write

φ|Ui =

n(i)∑
j=0

(bj/f
∗(φi)

n(i))ωij

for some bj/f
∗(φi)

n(i) ∈ O(Ui). Since ∩i(Y \D(φi)) = ∩iV (φi) = ∩iV (φ
n(i)
i ) = ∅,

the ideal in O(Y ) generated by the φi’s contains 1. Thus 1 =
∑

i hiφ
n(i)
i for some

hi ∈ O(Y ), hence

1 =
∑
i

f∗(hi)f
∗(φi)

n(i)
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and

φ =
∑
i

φf∗(hi)f
∗(φi)

n(i) =
∑
i,j

f∗(hi)bjωij .

This shows that φ =
∑

ij cijωij for some cij ∈ O(X), that is, {ωij} is a generating
set of the f∗(O(Y ))-module O(X). In particular, O(X) is integral over f∗(O(Y ))
and O(X) is an algebra of finite type over k. Since the elements f∗(φi)

n(i) generate
the unit ideal in O(X), applying by Lemma 10.7, we obtain that X is an affine set .

(ii) Let Z be a locally closed subset of Y . Then Z = U ∩Z ′, where U is open and
Z ′ is closed in Y . Taking an affine open cover of U and applying (i), we may assume
that Y = U is affine and Z is a closed subset of Y . Then f−1(Z) is closed in X.
Since X is affine f−1(Z) is affine. The restriction of f to f−1(Z) is a regular map f̄ :
f−1(Z)→ Z of affine sets corresponding to the homomorphism of the factor-algebras
f̄∗ : O(Y )/I(Z) → O(X)/I(f−1(Z)). Since I(f−1(Z)) = f∗(I(Z))O(X), f̄∗ is
injective. By Lemma 10.3, the corresponding extension of algebras is integral. Thus
f̄ is finite.

(iii) Applying (i), we reduce the proof to the case where X,Y and Z are affine. By
Lemma 10.1, O(X) is finite over f∗(O(Y )) and f∗(O(Y )) is finite over f∗(g∗(O(Z))) =
(g ◦ f)∗(O(Z)). Thus O(X) is finite over (g ◦ f)∗(O(Z)), hence integral over
(g ◦ f)∗(O(Z)).

Proposition 10.9. Let f : X → Y be a finite regular map of algebraic k-sets. Then

(i) f is surjective;

(ii) for any y ∈ Y , the fibre f−1(y) is a finite set.

Proof. Clearly, we may assume that X and Y are affine, B = O(X) is integral
over A = O(Y ) and φ = f∗ is injective. A point y ∈ Y defines a homomorphism
evy : A → K whose kernel is a prime ideal p. A point x ∈ f−1(y) corresponds
to a homomorphism evx : B → K of k-algebras such that its composition with
φ is equal to evy. By Lemma 10.3 (vi), there exists a prime ideal P in B such
that φ−1(P) = p. Let Q(B/P) be the field of fractions of the quotient ring B/P
and Q(A/p) be the field of fractions of the ring A/p. Since B is integral over A,
the homomorphism φ defines an algebraic extension Q(B/P)/Q(A/p) (Lemma 10.3
(iv)). Since K is algebraically closed, there exists a homomorphism Q(B/P) → K
which extends the natural homomorphism Q(A/p) → K defined by the injective
homomorphism A/p → K induced by evy. The composition of the restriction of the
homomorphism Q(B/P)→ K to B/P and the factor map B → B/P defines a point
x ∈ f−1(y). This proves the surjectivity of f .

Note that the field extension Q(B/P)/Q(A/p) is finite (since it is algebraic and
Q(B/P) is a finitely generated algebra over Q(A/p). It is known from the theory
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of field extensions that the number of homomorphisms Q(B/P) → K extending the
homomorphism A/p → K is equal to the separable degree [Q(B/P) : Q(A/p)]s of
the extension Q(B/P)/Q(A/(p)). It follows from the previous arguments that the
number of points in f−1(y) is equal to the sum∑

P:φ−1(P )=p

[Q(B/P) : Q(A/p)]s.

So it suffices to show that the number of prime ideals P ⊂ B such that φ−1(P) = p
is finite. It follows from Lemma 10.3 (iii) that the set of such prime ideals is equal
to the set of irreducible components of the closed subset of X defined by the proper
ideal pB. We know that the number of irreducible components of an affine k-set is
finite. This proves the second assertion.

Theorem 10.10. Let X be a projective (resp. affine) irreducible algebraic k-set.
Assume that k is an infinite field. Then there exists a finite regular map f : X →
Pnk(K) (resp. Ank(K)).

Proof. Assume first that X is projective. Let X be a closed subset of some Prk(K).
If X = Prk(K), we take for f the identity map. So we may assume that X is a
proper closed subset. Since k is infinite, we can find a point x ∈ Prk(k) \ X. Let
px : X → Pr−1

k (K) be the linear projection from the point x. We know from the
previous examples that px : X → px(X) is a finite k-map. If px(X) = Pr−1

k (K), we
are done. Otherwise, we take a point outside px(X) and project from it. Finally, we
obtain a finite map (composition of finite maps) X → Pnk(K) for some n.

Assume that X is affine. Then, we replace X by an isomorphic set lying as a closed
subset of Prk(K)0 of some Prk(K). Let X̄ be the closure of X in Prk(K). Projecting
from a point x ∈ Prk(K)\ (X̄ ∪Prk(K)0), we define a finite map X̄ → Pr−1

k (K). Since
one of the equations defining x can be taken to be T0 = 0, the image of Prk(K)0 is
contained in Pr−1

k (K)0. Thus the image of X is contained in Pr−1
k (K)0

∼= Ar−1
k (K).

Continuing as in the projective case, we prove the theorem.

The next corollary is called the Noether Normalization theorem. Together with the
two Hilbert’s theorems (Basis and Nullstellensatz) these three theorems were known
as “the three whales of algebraic geometry.”

Corollary 10.11. Let A be a finitely generated algebra over a field k. Then A is
isomorphic to an integral extension of the polynomial algebra k[Z1, . . . , Zn].

Proof. Find an affine algebraic set X with O(X) ∼= A and apply the previous theorem.
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Problems.

1. Decide whether the following maps f : X → Y are finite:

(a) Y = V (Z2
1 − Z3

2 ) be the cuspidal cubic, X = A1, f is defined by the formula
x→ (x3, x2);

(b) X = Y = A2, f is defined by the formula (x, y)→ (xy, y).

2. Let f : X → Y be a finite map. Show that the image of any closed subset of X is
closed in Y .

3. Let f : X → Y and g : X ′ → Y ′ be two finite regular maps. Prove that the
Cartesian product map f × g : X ×X ′ → Y × Y ′ is a finite regular map.

4. Give an example of a surjective regular map with finite fibres which is not finite.

5. Let A be an integral domain, Q be its field of fractions. The integral closure Ā of
A in Q is called the normalization of A. A normal ring is a ring A such that A = Ā.

(a) Prove that Ā is a normal ring;

(b) Prove that the normalization of the ring k[Z1, Z2]/(Z2
1 −Z2

2 (Z2 +1)) is isomor-
phic to k[T ];

(c) Show that k[Z1, Z2, Z3]/(Z1Z2 − Z2
3 ) is a normal ring.

6. Let B = k[Z1, Z2]/(Z1Z
2
2 + Z2 + 1). Find a subring A of B isomorphic to a ring

of polynomials such that B is finite over A.



Lecture 11

Dimension

In this lecture we give a definition of the dimension of an algebraic (= quasi-projective
algebraic) k-set. Recall that the dimension of a linear space L can be defined by :

dimL = sup{r : ∃ a strictly decreasing chain of linear subspaces L0 ⊃ L1 ⊃ . . . ⊃ Lr}.

The dimension of algebraic sets is defined in a very similar way:

Definition 11.1. Let X be a non-empty topological space. Its Krull dimension is
defined to be equal to

dimX = sup{r : ∃ a chain Z0 ⊃ Z1 ⊃ . . . ⊃ Zr 6= ∅ of closed irreducible subsets of X}.

By definition the dimension of the empty set is equal to −∞.
The dimension of an algebraic k-set X is the Krull dimension of the corresponding

topological space.

Example 11.1. dimA1
k(K) = 1. Indeed, the only proper closed irreducible subset is

a finite set defined by an irreducible polynomial with coefficients in k. It does not
contain any proper closed irreducible subsets.

Proposition 11.2. (General properties of dimension). Let X be a topological space.
Then

(i) dimX = 0 if X is a non-empty Hausdorff space;

(ii) dimX = sup{dimXi, i ∈ I}, where Xi, i ∈ I, are irreducible components of
X;

(iii) dimX ≥ dimY if Y ⊂ X, the strict inequality takes place if none of the
irreducible components of the closure of Y is an irreducible component of X;

93
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(iv) if X is covered by a family of open subsets Ui, then dimX is equal to supi Ui.

Proof. (i) In a non-empty Hausdorff space a point is the only closed irreducible subset.
(ii) Let Z0 ⊃ Z1 ⊃ . . . ⊃ Zr be a strictly decreasing chain of irreducible closed

subsets of X. Then Z0 = ∪i∈I(Z0 ∩Xi) is the union of closed subsets Z0 ∩Xi. Since
Z0 is irreducible, Z0 ∩Xi = Z0 for some Xi, i.e., Z0 ⊂ Xi. Thus the above chain is
a chain of irreducible closed subsets in Xi and r ≤ dimXi.

(iii) Let Z0 ⊃ Z1 ⊃ . . . ⊃ Zr be a strictly decreasing chain of irreducible closed
subsets of Y , then the chain of the closures Z̄i of Zi in X of these sets is a strictly
decreasing chain of irreducible closed subsets of X. As we saw in the proof of (ii) all
Z̄i are contained in some irreducible component Xi of X. If this component is a not
an irreducible component of the closure of Y , then Xi ⊃ Z̄0 and we can add it to the
chain to obtain that dimX > dimY .

(iv) Left to the reader.

Proposition 11.3. An algebraic k-set X is of dimension 0 if and only if it is a finite
set.

Proof. By Proposition 11.2 (ii) we may assume that X is irreducible. Suppose
dimX = 0. Take a point x ∈ X and consider its closure Z in the Zariski k-topology. It
is an irreducible closed subset which does not contain proper closed subsets (if it does,
we find a proper closed irreducible subset of Z). Since dimX = 0, we get Z = X. We
want to show that X is finite. By taking an affine open cover, we may assume that X is
affine. Now O(X) is isomorphic to a quotient of polynomial algebra k[Z1, . . . , Zn]/I.
Since X does not contain proper closed subsets I must be a maximal ideal. As we saw
in the proof of the Nullstellensatz this implies that O(X) is a finite field extension of k.
Every point of X is defined by a homomorphism O(X)→ K. Since K is algebraically
closed there is only a finite number of homomorphisms O(X) → K. Thus X is a
finite set (of cardinality equal to the separable degree of the extension O(X)/k).

Conversely, if X is a finite irreducible set, then X is a finite union of the closures
of its points. By irreducibility it is equal to the closure of any of its points. Clearly it
does not contain proper closed subsets, hence dimX = 0.

Definition 11.2. For every commutative ring A its Krull dimension is defined by

dimA = sup{r : ∃ strictly increasing chain P0 ⊂ . . . ⊂ Pk of proper prime ideals in A}

Proposition 11.4. Let X be an affine algebraic k-set and A = O(X) be the k-algebra
of regular functions on X. Then

dimX = dimA.



95

Proof. Obviously, follows from the existence of the natural correspondence between
closed irreducible subsets of X and prime ideals in O(X) ∼= A.

Recall that a finite subset {x1, . . . , xk} of a commutative algebra A over a field
k is said to be algebraically dependent (resp. independent) over k if there exists
(resp. does not exist) a non-zero polynomial F (Z1, . . . , Zk) ∈ k[Z1, . . . , Zk] such that
F (x1, . . . , xk) = 0. The algebraic dimension of A over k is the maximal number of
algebraically independent elements over k in A if it is defined and ∞ otherwise. We
will denote it by alg.dimkA.

Lemma 11.5. Let A be a k-algebra without zero divisors and Q(A) be the field of
fractions of A. Then

(i) alg.dimkQ(A) = alg.dimkA;

(ii) alg.dimkA ≥ dimA.

Proof. (i) Obviously, alg.dimkA ≤ alg.dimkQ(A). If x1, . . . , xr are algebraically in-
dependent elements in Q(A) we can write them in the form ai/s, where ai ∈ A, i =
1, . . . , r, and s ∈ A. Consider the subfield Q′ of Q(A) generated by a1, . . . , ar, s. Since
Q′ contains x1, . . . , xr, s, alg.dimkQ

′ ≥ r. If a1, . . . , ar are algebraically dependent,
then Q′ is an algebraic extension of the subfield Q′′ generated by s and a1, . . . , ar with
some ai, say ar, omitted. Since alg.dimkQ

′ = alg.dimkQ
′′, we find r algebraically in-

dependent elements a1, . . . , ar−1, s in A. This shows that alg.dimkQ(A) ≤ alg.dimkA.
(ii) Let P be a prime ideal in A. Let x̄1, . . . , x̄r be algebraically independent

elements over k in the factor ring A/P and let x1, . . . , xr be their representatives in A.
We claim that for every nonzero x ∈ P the set x1, . . . , xr, x is algebraically independent
over k. This shows that alg.dimkA > alg.dimkA/P and clearly proves the statement.
Assume that x1, . . . , xr, x are algebraically dependent. Then F (x1, . . . , xr, x) = 0 for
some polynomial F ∈ k[Z1, . . . , Zn+1]\{0}. We can write F as a polynomial in Zn+1

with coefficients in k[Z1, . . . , Zn]. Then

F (x1, . . . , xr, x) = a0(x1, . . . , xr)x
n + . . .+ an−1(x1, . . . , xr)x+ an(x1, . . . , xr) = 0,

where ai ∈ k[Z1, . . . , Zn]. Canceling by x, if needed, we may assume that an 6= 0
(here we use that A does not have zero divisors). Passing to the factor ring A/P, we
obtain the equality

F (x̄1, . . . , x̄r, x̄) =
n∑
i=0

ai(x̄1, . . . , x̄r)x̄
n−i = an(x̄1, . . . , x̄r) = 0,

which shows that x̄1, . . . , x̄r are algebraically dependent. This contradiction proves
the claim.
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Proposition 11.6.

dimAnk(K) = dimPn(K) = n.

Proof. Since Pn(K) is covered by affine sets isomorphic to Ank(K), the equality
dimAnk(K) = dimPn(K) follows from Proposition 11.2. By Proposition 11.4, we
have to check that dim k[Z1, . . . , Zn] = n. Obviously,

(0) ⊂ (Z1) ⊂ (Z1, Z2) ⊂ . . . ⊂ (Z1, . . . , Zn)

is a strictly increasing chain of proper prime ideals of k[Z1, . . . , Zn]. This shows that

dim k[Z1, . . . , Zn] ≥ n.

By Lemma 11.5,

alg.dimkk[Z1, . . . , Zn] = alg.dimkk(Z1, . . . , Zn) = n ≥ dim k[Z1, . . . , Zn] ≥ n.

This proves the assertion.

Lemma 11.7. Let B a k-algebra which is integral over its subalgebra A. Then

dimA = dimB.

Proof. For every strictly increasing chain of proper prime ideals P0 ⊂ . . . ⊂ Pk in B,
we have a strictly increasing chain P0 ∩A ⊂ . . . ⊂ Pk ∩A of proper prime ideals in A
(Lemma 10.3 (iii) from Lecture 10). This shows that dimB ≤ dimA.

Now let P0 ⊂ . . . ⊂ Pk be a strictly increasing chain of prime ideals in A. By
Lemma 10.3 from Lecture 10, we can find a prime ideal Q0 in B with Q0 ∩ A = P0.
Let Ā = A/P0, B̄ = B/Q0, the canonical injective homomorphism Ā → B̄ is an
integral extension. Applying Lemma 11.5 again we find a prime ideal Q̄1 in B̄ which
cuts out in Ā the image of P1. Lifting Q̄1 to a prime ideal Q1 in B we find Q1 ⊃ Q0

and Q1 ∩A = P1. Continuing in this way we find a strictly increasing chain of prime
ideals Q0 ⊃ Q1 ⊃ . . . ⊃ Qk in B. This checks that dimB ≥ dimA and proves the
assertion.

Theorem 11.8. Let A be a finitely generated k-algebra without zero divisors. Then

dimA = alg.dimkA = alg.dimkQ(A).

In particular, if X is an irreducible affine algebraic k-set and R(X) is its field of rational
functions, then

dimX = alg.dimkO(X) = alg.dimkR(X).
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Proof. By Noether’s Normalization Theorem from Lecture 10, A is integral over its
subalgebra isomorphic to k[Z1, . . . , Zn]. Passing to the localization with respect
to the multiplicative set S = k[Z1, . . . , Zn] \ {0}, we obtain an integral extension
k(Z1, . . . , Zn)→ AS . Since k(Z1, . . . , Zn) is a field, and A is a domain, AS must be
a field equal to its field of fractions Q(A). The field extension k(Z1, . . . , Zn)→ Q(A)
is algebraic. Applying Lemmas 11.5 and 11.7, we get

alg.dimkA ≥ dimA = dim k[Z1, . . . , Zn] = alg.dimkk(Z1, . . . , Zn)

= alg.dimkQ(A) = alg.dimkA.

This proves the assertion.

So we see that for irreducible affine algebraic sets the following equalities hold:

dimX = dimO(X) = alg.dimkO(X) = alg.dimkR(X) = n

where n is defined by the existence of a finite map X → Ank(K).
Note that, since algebraic dimension does not change under algebraic extensions,

we obtain

Corollary 11.9. Let X be an affine algebraic k-set and let X ′ be the same set con-
sidered as an algebraic k′-set for some algebraic extension k′ of k. Then

dimX = dimX ′.

To extend the previous results to arbitrary algebraic sets X, we will show that for
every dense open affine subset U ⊂ X

dimU = dimX. (11.1)

If X is an affine irreducible set, and U = D(φ) for some φ ∈ O(X), then it is easy
to see. We have

dimD(φ) = dimO(U)[ 1
φ ] = alg.dimkQ(O(U)[ 1

φ ]) (11.2)

= alg.dimkQ(O(U)) = dimU.

It follows from this equality that any two affine sets have the same dimension
(because they contains a common subset of the form D(φ)).

To prove equality (11.1) in the general case we need the following.

Theorem 11.10. (Geometric Krull’s Hauptidealsatz). Let X be an affine irreducible
algebraic k-set of dimension n and let φ be a non-invertible and non-zero element
of O(X). Then every irreducible component of the set V (φ) of zeroes of φ is of
dimension n− 1.
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To prove this theorem we shall need two lemmas.

Lemma 11.11. Let B be a domain which is integral over A = k[Z1, . . . , Zr], and let
x and y be coprime elements of A. Assume that x|uy for some u ∈ B. Then x|uj for
some j.

Proof. Let uy = xz for some z ∈ B. Since z is integral over Q(A) its minimal monic
polynomial over Q(A) has coefficients from A. This follows from the Gauss Lemma
(if F (T ) ∈ Q(A)[T ] divides a monic polynomial G(T ) ∈ A[T ] then F (T ) ∈ A[T ]).
Let

F (T ) = Tn + a1T
n−1 + . . .+ an = 0, ai ∈ A,

be a minimal monic polynomial of z. Plugging z = uy/x into the equation, we obtain
that u satisfies a monic equation:

F (T )′ = Tn + (a1x/y)Tn−1 + . . .+ (anx
n/yn) = 0

with coefficients in the field Q(A). If u satisfies an equation of smaller degree over
Q(A), after plugging in u = xz/y, we find that z satisfies an equation of degree
smaller than n. This is impossible by the choice of F (T ). Thus F (T )′ is a minimal
polynomial of u. Since u is integral over A, the coefficients of F (T )′ belong to A.
Therefore, yi|aixi, and, since x and y are coprime, yi|ai. This implies that un+xt = 0
for some t ∈ A, and therefore x|un.

Lemma 11.12. Assume k is infinite. Let X be an irreducible affine k-set, and let φ be a
non-zero and non-invertible element in O(X). There exist φ1, . . . , φn−1 ∈ O(X) such
that the map X → Ank(K) defined by the formula x→ (φ(x), φ1(x), . . . , φn−1(x)) is
a regular finite map.

Proof. Replacing X by an isomorphic set, we may assume that X is a closed subset of
some Pmk (K)0, and φ = F (T0, . . . , Tm)/T d0 for some homogeneous polynomial F (T )
of degree d > 0 not divisible by T0. Let X̄ be the closure of X in Pmk (K).

Let F1(T ) be a homogeneous polynomial of degree d which does not vanish iden-
tically on any irreducible component of X̄∩V (T0). One constructs F1(T ) by choosing
a point in each component and a linear homogeneous form L not vanishing at each
point (here where we use the assumption that k is infinite) and then taking F1 = Ld.
Then

dim X̄ ∩ V (T0) ∩ V (F ) ∩ V (F1) < dim X̄ ∩ V (F ) ∩ V (T0)

Continuing in this way we find n − 1 homogeneous polynomials F1(T ), . . . , Fn−1(T )
of degree d such that

X̄ ∩ V (T0) ∩ V (F ) ∩ V (F1) ∩ . . . ∩ V (Fn−1) = ∅.
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Let f : X̄ → Pnk(K) be the regular map given by the polynomials (T d0 , F, F1, . . . , Fn−1).
We claim that it is finite. Indeed, replacing X̄ by its image vd(X̄) under the Veronese
map vd : Pmk (K) → PNk (k), we see that f is equal to the restriction of the linear
projection map

prE : vd(X̄)→ Pnk(K)

where E is the linear subspace defined by the linear forms in N + 1 unknowns cor-
responding to the homogeneous forms T d0 , F, F1, . . . , Fn−1. We know that the lin-
ear projection map is finite. Obviously, f(X) ⊂ Pnk(K)0, and the restriction map
f |X : X → Pnk(K)0

∼= Ank(K), defined by the formula

x→ (
F

T d0
(x),

F1

T d0
(x), . . . ,

Fn−1

T d0
(x)) = (φ(x), φ1(x), . . . , φn−1(x))

is finite.

Proof of Krull’s Hauptidealsatz:
Let f : X → An(K) be the finite map constructed in the previous lemma. It

suffices to show that the restrictions φ̄i of the functions φi(i = 1, . . . , n − 1) to any
irreducible component Y of V (φ) are algebraically independent elements of the ring
O(Y ) (since dimY = alg.dimkO(Y )). Let F ∈ k[Z1, . . . , Zn−1] \ {0} be such that
F (φ1, . . . , φn−1) ∈ I(Y ). Choosing a function g 6∈ I(Y ) vanishing on the remaining
irreducible components of V (φ), we obtain that

V (F (φ1, . . . , φn−1)g) ⊃ V (φ).

By the Nullstellensatz, φ|(F (φ1, . . . , φn−1)g)N for some N > 0. Now, we can apply
Lemma 11.11. Identifying k[Z1, . . . , Zn−1, Zn] with the subring of O(X) by means
of f∗, we see that φ = Zn, F (φ1, . . . , φn−1) = F (Z1, . . . , Zn), and Zn+1|FNgN in
O(X). From Lemma 11.11 we deduce that Zn|gjN for some j ≥ 0, i.e., g ≡ 0 on
V (φ) contradicting the choice of g. This proves the assertion.

Theorem 11.13. Let X be an algebraic set and U be a dense open subset of X.
Then

dimX = dimU.

Proof. Obviously, we may assume that X is irreducible and U is its open subset. First
let us show that all affine open subsets of X have the same dimension. For this it is
enough to show that dimU = dimV if V ⊂ U are affine open subsets. Indeed, we
know that for every pair U and U ′ of open affine subsets of X we can find an affine non-
empty subset W ⊂ U ∩U ′. Then the above will prove that dimW = dimU,dimW =
dimU ′. Assume U is affine, we can find an open non-empty subset D(φ) ⊂ V ⊂ U ,
where φ ∈ O(U) \ O(U)∗. Applying (11.2), we get dimU = dimD(φ). This shows
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that all open non-empty affine subsets of X have the same dimension. Let Z0 ⊃
Z1 ⊃ . . . ⊃ Zn be a maximal decreasing chain of closed irreducible subsets of X, i.e.,
n = dimX. Take x ∈ Zn and let U be any open affine neighborhood of x. Then

Z0 ∩ U ⊃ Z1 ∩ U ⊃ . . . ⊃ Zn ∩ U 6= ∅

is a decreasing chain of closed irreducible subsets of U (note that Zi∩U 6= Zj ∩U for
i ≥ j since otherwise Zj = Zi ∪ (Zj ∩ (X − U)) is the union of two closed subsets).
Thus dimU ≥ dimX, and Proposition 11.2 implies that dimU = dimX. This proves
that for every affine open subset U of X we have dimU = dimX. Finally, if U is any
open subset, we find an affine subset V ⊂ U and observe that

n = dimV ≤ dimU ≤ dimX = n

which implies that dimU = dimX.

Corollary 11.14. Let f : X → Y be a finite map of irreducible algebraic k-sets. Then

dimX = dimY.

Proof. Take any open affine subset U of Y . Then V = f−1(U) is affine and
the restriction map V → U is finite. By Lemma 11.7, dimU = dimV . Hence
dim f−1(Y ) = dimV = dimU = dimYi.

Theorem 11.15. Let F be a homogeneous polynomial not vanishing identically on
an irreducible quasi-projective set X in Pnk(K) and Y be an irreducible component of
X ∩ V (F ), then, either Y is empty, or

dimY = dimX − 1.

Proof. Assume Y 6= ∅. Let y ∈ Y and U be an open affine subset of X containing
y. Then Y ∩ U is an open subset of Y , hence dimY ∩ U = dimY . Replacing U
with a smaller subset, we may assume that U ⊂ Pn(k)i for some i. Then F defines a
regular function φ = F/T ri , r = deg(F ), on U , and Y ∩ U = V (φ) ⊂ U . By Krull’s
Hauptidealsatz, dimY ∩ U = dimU − 1. Hence

dimY = dimY ∩ U = dimU − 1 = dimX − 1.

Corollary 11.16. Let X be a quasi-projective algebraic k-set in Pnk(K), F1, . . . , Fr ∈
k[T0, . . . , Tn] be homogeneous polynomials,

Y = X ∩ V ((F1, . . . , Fr)) = X ∩ V (F1) ∩ . . . ∩ V (Fr)
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be the set of its common zeroes and Z be an irreducible component of this set. Then,
either Z is empty, or

dimZ ≥ dimX − r.

The equality takes place if and only if for every i = 1, . . . , r the polynomial Fi does
not vanish identically on any irreducible component of X ∩ V (F1) ∩ . . . ∩ V (Fi−1).

Corollary 11.17. Every r ≤ n homogeneous equations in n + 1 unknowns have a
common solution over an algebraically closed field. Moreover, if r < n, then the
number of solutions is infinite.

Proof. Apply the previous Corollary to X = Pnk and use that an algebraic set is finite
if and only if it is of dimension 0 (Proposition 11.3).

Example 11.18. Let C = v3(P1(K)) be a twisted cubic in P3(K). We know that C
is given by three equations:

F1 = T0T2 − T 2
1 = 0, F2 = T0T3 − T1T2 = 0, F3 = T1T3 − T 2

2 = 0.

We have V (F1)∩ V (F2) = C ∪L, where L is the line T0 = T1 = 0. At this point, we
see that each irreducible component of V (F1)∩V (F2) has exactly dimension 1 = 3−2.
However, V (F3) contains C and cuts out L in a subset of C. Hence, every irreducible
component of V (F1) ∩ V (F2) ∩ V (F3) is of the same dimension 1.

Theorem 11.19. (On dimension of fibres). Let f : X → Y be a regular surjective
map of irreducible algebraic sets, m = dimX,n = dimY . Then

(i) for any y ∈ Y and an irreducible component F of the fibre f−1(y), dimF ≥
m− n;

(ii) there exists a nonempty open subset V of Y such that, for any y ∈ V ,
dim f−1(y) = m− n.

Proof. Let x ∈ f−1(y). Replacing X with an open affine neighborhood of x, and
same for y, we assume that X and Y are affine. Let φ : Y → An(K) be a finite map
and f ′ = φ ◦ f . Applying Proposition 10.9 from Lecture 10 we obtain that, for any
z ∈ An(K), the fibre f ′−1(z) is equal to a finite disjoint union of the fibres f−1(y)
where y ∈ φ−1(z). Since dimY = n, we may assume that Y = An(K).

(i) Each point y = (a1, . . . , an) ∈ An(K) is given by n equations Zi−ai = 0. The
fibre f−1(y) is given by n equations f∗(Zi−ai) = 0. Applying Krull’s Hauptidealsatz,
we obtain (i).

(ii) Since f is surjective, f∗ : O(Y ) → O(X) is injective, hence defines an ex-
tension of fields of rational functions f∗ : R(Y ) → R(X). By the theory of finitely
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generated field extensions, L = R(X) is an algebraic extension of a purely transcen-
dental extension K ′ = R(Y )(z1, . . . , zr) of K = R(Y ). Clearly,

m = alg.dimR(X) = alg.dimR(Y ) + r = n+ r.

Let φ : X− → Y × Ar(K) be a rational map of affine sets corresponding to the
extension L/K ′. We may replace again X and Y by open affine subsets to assume
that φ is regular. Let O(X) be generated by u1, . . . , uN as a k-algebra. We know
that every ui satisfies an algebraic equation a0u

d
i + . . . + ad = 0 with coefficients in

K ′ = R(Y ×Ar(K)). Replacing Y ×Ar(K) by an open subset Ui we may assume that
all ai ∈ O(U) and a0 is invertible (throwing away the closed subset of zeroes of a0).
Taking the intersection U of all Ui’s, we may assume that all ui satisfy monic equations
with coefficients in O(U). Thus O(X) is integral over O(U) hence φ : X → U is
a finite map. Let p : Y × Ar(K) → Y be the first projection. The corresponding
extension of fields K ′/K is defined by p∗. Since p is surjective, p(U) is a dense subset
of Y . Let us show that p(U) contains an open subset of Y . We may replace U by
a subset of the form D(F ) where F = F (Y1, . . . , Yn, Z1, . . . , Zr) ∈ O(Y × Ar(K)).
Write F =

∑
i FiZ

i as a sum of monomials in Z1, . . . , Zr. For every y ∈ Y such
that not all Fi(y) = 0, we obtain non-zero polynomial in Z, hence we can find a
point z ∈ Ar(K) such that F (y, z) 6= 0. This shows that p(D(F )) ⊃ ∪D(Fi), hence
the assertion follows. Let V be an open subset contained in p(U). Replacing U by
an open subset contained in p−1(V ), we obtain a regular map p : U → V and the
commutative triangle:

φ−1(U)
φ //

f
##

U

p
��

V

The fibres of p are open subsets of fibres of the projection Y ×Ar(K)→ Ar(K) which
are affine n-spaces. The map φ : φ−1(U)→ U is finite as a restriction of a finite map
over an open subset. Its restriction over the closed subset p−1(y) is a finite map too.
Hence φ defines a finite map f−1(y)→ p−1(y) and

dim f−1(y) = dim p−1(y) = r = m− n.

The theorem is proven.

Corollary 11.20. Let X and Y be irreducible algebraic sets. Then

dimX × Y = dimX + dimY.

Proof. Consider the projection X × Y → Y and apply the Theorem.
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Theorem 11.21. Let X and Y be irreducible quasi-projective subsets of Pn(K). For
every irreducible component Z of X ∩ Y

dimZ ≥ dimX + dimY − n.

Proof. Replacing X and Y by its open affine subsets, we may assume that X and Y
are closed subsets of An(K). Let ∆ : An(K)→ An(K)×An(K) be the diagonal map.
Then ∆ maps X ∩ Y isomorphically onto (X × Y ) ∩ ∆An(K), where ∆An(K) is the
diagonal of An(K). However, ∆An(K) is the set of common zeroes of n polynomials
Zi − Z ′i where Z1, . . . , Zn are coordinates in the first factor and Z ′1, . . . , Z

′
n are the

same for the second factor. Thus we may apply Theorem 11.10 n times to obtain

dimZ ≥ dimX × Y − n.

It remains to apply the previous corollary.

We define the codimension codim Y (or codim (Y,X) to be precise) of a subspace
Y of a topological space X as dimX − dimY . The previous theorem can be stated
in these terms as

codim (X ∩ Y,Pn(K)) ≤ codim (X,Pn(K)) + codim (Y,Pn(K)).

In this way it can be stated for the intersection of any number of subsets.

Problems.

1. Give an example of

(a) a topological space X and its dense open subset U such that dimU < dimX;

(b) a surjective continuous map f : X → Y of topological spaces with dimX <
dimY ;

(c) a Noetherian topological space of infinite dimension.

2. Prove that every closed irreducible subset of Pn(K) or An(K) of codimension 1 is
the set of zeroes of one irreducible polynomial.

3. Let us identify the space Knm with the space of matrices of size m×n with entries
in K. Let X ′ be the subset of matrices of rank ≤ m − 1 where m ≤ n. Show that
the image of X ′ \ {0} in the projective space Pnm−1(K) is an irreducible projective
set of codimension n−m+ 1.

4. Show that for every irreducible closed subset Z of an irreducible algebraic set X
there exists a chain of n = dimX + 1 strictly decreasing closed irreducible subsets
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containing Z as its member. Define codimension of an irreducible closed subset Z of
an irreducible algebraic set X as

codim (Y,X) = max{k : ∃ a chain of closed irreducible subsets Z = Z0 ⊂ Z1 ⊂ . . . ⊂ Zk}.

Prove that dimY + codim (Y,X) = dimX. In particular, our definition agrees with
the one given at the end of this lecture.

5. A subset V of a topological space X is called constructible if it is equal to a disjoint
union of finitely many locally closed subsets. Using the proof of Theorem 11.19 show
that the image f(V ) of a constructible subset V ⊂ X under a regular map f : X → Y
of quasi-projective sets contains a non-empty open subset of its closure in Y . Using
this show that f(V ) is constructible (Chevalley’s theorem).

6*. Let X be an irreducible projective curve in Pn(K), where k = K, and E =
V (a0T0 + . . .+ anTn) be a linear hyperplane. Show that E intersects X at the same
number of distinct points if the coefficients (a0, . . . , an) belong to a certain Zariski
open subset of the space of the coefficients. This number is called the degree of X.

7*. Show that the degree of the Veronese curve vr(P1(K)) ⊂ Pn(K) is equal to r.

8*. Generalize Bezout’s Theorem by proving that the set of solution of n homogeneous
equations of degree d1, . . . , dn is either infinite or consists of d1 · · · dn points taken
with appropriate multiplicities.



Lecture 12

Lines on hypersurfaces

In this lecture we shall give an application of the theory of dimension. Consider the
following problem. Let X = V (F ) be a projective hypersurface of degree d = degF
in Pn(K). Does it contain a linear subspace of given dimension, and if it does,
how many? Consider the simplest case when d = 2 (the case d = 1 is obviously
trivial). Then F is a quadratic form in n + 1 variables. Let us assume for simplicity
that char(K) 6= 2. Then a linear m-dimensional subspace of dimension in V (F )
corresponds to a vector subspace L of dimension m+ 1 in Kn+1 contained in the set
of zeroes of F in Kn+1. This is an isotropic subspace of the quadratic form F . From
the theory of quadratic forms we know that each isotropic subspace is contained in
a maximal isotropic subspace of dimension n + 1 − r + [r/2], where r is the rank of
F . Thus V (F ) contains linear subspaces of dimension ≤ n − r + [r/2] but does not
contain linear subspaces of larger dimension. For example, if n = 3, and r = 4, X is
isomorphic to V (T0T1 − T2T3). For every λ, µ ∈ K, we have a line L(λ, µ) given by
the equations

λT0 + µT2 = 0, µT1 + λT3 = 0,

or a line M(λ, µ) given by the equation

M(λ, µ) : λT0 + µT3 = 0, µT1 + λT2 = 0.

It is clear that L(λ, µ) ∩ L(λ′, µ′) = ∅ (resp. M(λ, µ) ∩ M(λ′, µ′) 6= ∅) if and
only if (λ, µ) 6= (λ′, µ′) as points in P1(K). On the hand L(λ, µ) ∩M(λ′, µ′) is one
point always. Under an isomorphism V (F ) ∼= P1(K)×P1(K), the two families of lines
L(λ, µ) and M(λ, µ) correspond to the fibres of the two projections P1(K)×P1(K)→
P1(K).

Another example is the Fermat hypersurface of V (F ) ⊂ P3(K) of degree d, where

F = T d0 + T d1 + T d2 + T d3 .

105
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Since

T di + T dj =

d∏
s=1

(Ti + ρsTj))

where ρ is a primitive d-th root of −1, we see that V (F ) contains 3d2 lines. Each one
is defined by the equations of the type:

Ti + ρsTj = 0, Tk + ρtTl = 0,

where {i, j, k, l} = {0, 1, 2, 3}. In particular, when d = 3, we obtain 27 lines. As we
shall see in this Lecture, “almost every” cubic surface contains exactly 27 lines. On
the other hand if d ≥ 4, “almost no” surface contains a line.

To solve our problems, we first parametrize the set of linear r-dimension al sub-
spaces of of Pn(K) by some projective algebraic set. This is based on the classic
construction of the Grassmann variety.

Let V be a vector space of dimension n+ 1 over a field K and let L be its linear
subspace of dimension r + 1. Then the exterior product

∧r+1(L) can be identified
with a one-dimensional subspace of

∧r+1(V ), i.e., with a point [L] of the projective
space p(

∧r+1(V )) =
∧r+1(V ) \ {0}/K∗. In coordinates, if e1, . . . , en+1 is a basis of

V , and f1, . . . , fr+1 is a basis of L, then
∧r+1(L) is spanned by one vector

f1 ∧ . . . ∧ fr+1 =
∑

1≤i1<...<ir+1≤n+1

p[i1, . . . , ir+1]ei1 ∧ . . . ∧ eir+1 .

If we order the vectors ei1 ∧ . . . ∧ eir+1 we may identify
∧r+1(V ) with K(n+1

r+1), then

the coordinate vector of the point [L] in p(
∧r+1(V )) ∼= P(n+1

r+1)−1(K) is the vector
(. . . , p[i1, . . . , ir+1], . . .). The coordinates p[i1, . . . , ir+1] are called the Plücker coor-
dinates of L. If we denote by M(L) the matrix of size (r + 1) × (n + 1) with the
j-th row formed by the coordinates of fj with respect to the basis (e0, . . . , en+1), then
p[i1, . . . , ir+1] is equal to the maximal size minor of M(L) composed of the columns
Ai1 , . . . , Air+1 .

The next theorem shows that the correspondence L→ [L] is a bijective map from
the set of linear subspaces of dimension r+ 1 in V to the set of K-points of a certain

projective subset G(r + 1, n+ 1) in P(n+1
r+1)−1(K).

Theorem 12.1. The subset G(r + 1, n+ 1) of lines in
∧r+1(V ) spanned by decom-

posable (r + 1)-vectors f1 ∧ . . . ∧ fr+1 is a projective algebraic set in P(
∧r+1(V )) ∼=

P(n+1
r+1)−1(K). The map L→ [L] =

∧r+1(L) is a bijective map from the set of linear
subspaces of V of dimension r + 1 to the set G(r + 1, n+ 1).
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Proof. We use the following fact from linear algebra. For every t ∈
∧r+1(V ) let

L(t) = {x ∈ V : t ∧ x = 0}. This is a linear subspace of V . Then dimL(t) ≥ r+ 1 if
and only if t is decomposable and equal to f1 ∧ . . .∧ fr+1 for some linear independent
vectors f1, . . . , fr+1 which have to form a basis of L(t). This assertion shows that the
subspace L can be reconstructed uniquely from [L] as the subspace L(t), where t is any
basis of [L]. Let us prove the assertion. The sufficiency is easy. If t = f1 ∧ . . . ∧ fr+1

for some basis {f1, . . . , fr+1} of a linear subspace of dimension r+ 1, then, obviously,
f1 ∧ . . . ∧ fr+1 ∧ x = 0 for any x ∈ L = Kf1 + . . .+Kfr+1 so that L ⊂ L(t). Since
f1 ∧ . . . ∧ fr+1 ∧ x = 0 implies that

∧r+2(Kf1 + . . .+Kfr+1 +Kx) = 0, we obtain
that dim(Kf1 + . . .+Kfr+1 +Kx) = r+1, hence x ∈ Kf1 + . . .+fr+1. This shows
that L = L(t). Conversely assume dimL(t) = r+1. Let f1, . . . fr+1 be a set of linear
independent vectors in L(t), and let {f1, . . . , fr+1, fr+1, . . . , fn+1} be an extension of
{f1, . . . , fr+1} to a basis of V . We can write

t =
∑

i1<...<ir+1

ai1...ir+1fi1 ∧ . . . ∧ fir+1 .

It is easy to see that t∧fi = 0, i = 1, . . . , r+1, implies ai1...ir+1 = 0 for {i1, . . . ir+1} 6=
{1, . . . , r + 1}. Hence t is proportional to f1 ∧ . . . ∧ fr+1.

To see why decomposable non-zero (r + 1)-vectors define a closed subset G(r +
1, n + 1) of p(

∧r+1(V )) it suffices to observe that dim L(t) ≥ r + 1 if and only if
rk(Tt) ≤ n − r, where Tt is the linear map V →

∧r+2(V ) defined by the formula
x 7→ t ∧ x. The latter condition is equivalent to vanishing of (n − r + 1)-minors of
the matrix of Tt with respect to some basis. By taking a basis e1, . . . , en+1 of V ,
it is easy to see that the entries of the matrix of Tt are the Plücker coordinates of
the space L(t). Thus we obtain that G(r + 1, n + 1) is the set of zeroes of a set of
homogeneous polynomials of degree n− r + 1. Observe that these polynomials have
integer coefficients, so G(r + 1, n+ 1) is a projective k-set for any k ⊂ K.

More generally, we can define a projective algebraic variety Gk(r+1, n+1) defined
by:

Gk(r + 1, n+ 1)(K) = {direct summands of Kn+1 of rank r + 1}.
Note that a direct summand of a free module is a projective module. The operation
of exterior power, M →

∧r+1(M) defines a morphism of projective algebraic varieties

p : Gk(r + 1, n+ 1)→ P(n+1
r+1)−1

k .

If r = 0 this morphism is an isomorphism.

Definition 12.1. The projective variety Gk(r + 1, n + 1) is called the Grassmann
variety over the field k. The morphism p is called the Plücker embedding of Gk(r +
1, n+ 1). For every algebraically closed field K containing k, we shall identify the set

Gk(r+ 1, n+ 1)(K) with the projective algebraic subset G(r+ 1, n+ 1) of P(n+1
r+1)−1

k .
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Proposition 12.2. The projective algebraic set G(r + 1, n+ 1) is an irreducible pro-
jective set of dimension (n− r)(r + 1).

Proof. We shall give two different proofs of this result. Each one carries some addi-
tional information about G(r+ 1, n+ 1). In the first one we use the following obvious
fact: the general linear group GL(n + 1,K) acts transitively on the set of (r + 1)-
dimension al linear subspaces of Kn+1. Moreover, the stabilizer of each such subspace
L is isomorphic to the subgroup P of GL(n + 1,K) that consists of matrices of the
form: (

A B
0 C

)
,

where A,B,C are matrices of size (r+1)× (r+1), (r+1)× (n−r), (n−r)× (n−r),
respectively. Let us consider GL(n+1,K) as a closed subset of Kn2+1 defined by the
equation T0det((Tij))−1 = 0. then it is clear that P is a closed subset of GL(n+1,K)
defined by the additional equations Tij = 0, i = n+ 2− r, . . . , n+ 1, j = 1, . . . , r+ 1.
The dimension of P is equal to (n+ 1)2− (n− r)(r+ 1). Next we define a surjective
regular map of algebraic k-sets f : GL(n + 1,K) → G(r + 1, n + 1) by the formula
M →M(L0), where L0 = Ke1 + . . .+Ker+1. If M = (aij), then

M(L0) = span{a11e1 + . . .+ an+11en+1, . . . , a1r+1e1 + . . .+ an+1r+1}

so that the Plücker coordinates p[i1, . . . , ir+1] of M(L0) are equal to the minor of
the matrix (aij) formed by the first r + 1 columns and the rows indexed by the set
{i1, . . . , ir+1}. This shows that f is a regular map from the affine k-set GL(n+1,K)
to the projective algebraic k-set G(r + 1, n + 1). Its fibres are isomorphic to P . By
the theorem on the dimension of fibres from Lecture 11, we obtain that

dim G(r+1, n+1) = dim GL(n+1,K)−dim P = (n+1)2−((n+1)2−(n−r)(r+1))

= (n− r)(r + 1).

Since GL(n+ 1,K) is irreducible, G(r + 1, n+ 1) is irreducible.

Now let us give another proof of this result. Choose the Plücker coordinates

p[j1, . . . , jr+1] and consider the open subsets D(p[j1, . . . , jr+1]) ⊂ P(n+1
r+1)−1

k (K). The
intersection D(p[j1, . . . , jr+1])∩G(r+ 1, n+ 1) is equal to the set of linear subspaces
L which admit a basis

f1 = a11e1 + . . .+ a1n+1en, . . . , fr+1 = ar+11e1 + . . .+ ar+1n+1en,

such that p[j1, . . . , jr+1] = det(Aj1j2...jr+1) 6= 0, where

Ai1i2...ir+1 =


a1j1 a1j2 . . . a1jr+1

. . . . . . . . . . . .

. . . . . . . . . . . .
ar+1j1 a1j2 . . . ar+1jr+1

 .
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After we replace f1, . . . , fr+1 with f ′1, . . . , f
′
r+1 such that

f ′1 = b11f1 + . . .+ b1r+1fr+1, . . . , f
′
r+1 = br+11f1 + . . .+ br+1r+1fr+1,

where (bij) is the inverse of the matrix Aj1j2...jr+1 , we may assume that Ai1i2...ir+1 is
the identity matrix Ir+1. Then we may take all (n− r)(r+ 1) other entries aij , j 6= jk
arbitrary, and obtain that D(p[i1, . . . , ir+1]) ∩ G(r + 1, n + 1) is isomorphic to the

affine space A(n−r)(r+1)
k (K). Thus G(r + 1, n+ 1) is covered by

(
n+1
r+1

)
open subsets

isomorphic to the affine space of dimension (n− r)(r+ 1). This obviously proves the
assertion.

Example 12.3. Let us consider the case r = 1, n = 3. ThenG(2, 4) ⊂ P5 parametrizes
lines in P3(K). We have six Plücker coordinates p[ij], i, j = 1, 2, 3, 4. An element
ω ∈

∧2(V ) can be identified with a skew-symmetric bilinear form V ∗ → V ∗ → K. The
matrix M of this bilinear form with respect to the dual basis e∗1, . . . , e

∗
4 has entries above

the diagonals equal to aij , where ω =
∑

1≤i<j≤4 aijei∧ej . The element ω = f1∧f2 if
and only if the matrix is of rank < 4. In fact, take φ ∈ V ∗ such that φ(f1) = φ(f2) = 0.
For any x ∈ V ∗ we have f1 ∧ f2(x, φ) = x(f1)φ(f2) − x(f2)φ(f1) = 0. Thus the
bilinear form has the kernel and the matrix has zero determinant. The determinant
of a skew-symmetric matrix is equal to the square of the Pffafian. Thus we get that
all decomposable vectors ω satisfy the condition Pf(M) = 0. The equation of the
Pffafian of a 4× 4 skew symmetric matrix is

a12a34 − a13a24 + a14a23 = 0.

Since we know already that G(2, 4) is an irreducible projective set of dimension 4, we
obtain that it coincides with the quadric V (Q) where

Q = p[12]p[34]− p[13]p[24] + p[14]p[23].

Evidently Q is a non-degenerate quadratic form.

Remark 12.4. Let us take K = C. Consider the anti-holomorphic involution of G(2, 4)
defined by

(p[12], p[13], p[14], p[23], p[24], p[34]) 7→ (p̄[12],−p̄[24], p̄[23], p̄[14],−p̄[13], p̄[34]).

Then the set of fixed points consists of points (z1, z2, z3, z4, z5, z6) ∈ P5(C) such that
z1, z2 ∈ R, z̄3 = z4, z̄5 = z6. They satisfy the equation z1z2 + |z3|2 + |z4|2 = 0.
Changing the variables z1, z2 to x1 − x2, x1 + x2, and dividing by x2 (it is easy to
see that x1, x2 cannot be equal to zero), we obtain the equation of a unit sphere in
R5. Thus G(2, 4) admits a real structure (not the standard one) such that the set of
real points is S4. The 4-dimensional sphere is a natural compactification of R4, the
space-time. In the twistor theory of Penrose, G(2, 4) is viewed as a complexification
of the real space-time.



110 LECTURE 12. LINES ON HYPERSURFACES

Remark 12.5. The equations for G(2, 4) given in the proof of Theorem 12.1 differ from
the equation Q = 0. They define a non-saturated ideal of the projective variety. Any
Grassmannian G(r + 1, n+ 1) can be given by a system of equations of degree 2, so
called the Plücker equations. They look as follows:

r+2∑
s=1

(−1)sp[i1, . . . , ir, js]p[j1 . . . , js−1, js+1, . . . , jr+2] = 0,

where {i1, . . . , ir} and {j1, . . . , jr+2} are any two strictly increasing sequences of the
set {1, . . . , n+ 1}.

We denote by Hyp(d;n) the projective space P(n+d
d )−1. If we use Υi0,...,in , 0 ≤

ij , i0 + . . .+ in = d to denote projective coordinates in this space then each K-point
(. . . , ai0,...,in , . . .) of this space defines the projective K-subvariety F = 0 of PnK where

F =
∑
i0,...,in

ai0,...,inT
i0
0 · · ·T

in
n = 0.

Thus we can view K-points of the projective space P(n+d
d )−1 as projective hypersurfaces

of degree d. This explains the notation. In the special case when d = 1, the space
Hyp(1, n) is called the dual projective space of Pnk and is denoted by P̌nk . Its K-points
are in a bijective correspondence with linear subspaces of Pnk(K) of dimension n − 1
(hyperplanes) .

Now, everything is ready to solve our problem. Fix any algebraically closed field
K. Let H = Hyp(d;n)(K) and G = G(r + 1, n+ 1)(K). Define

I(r, d, n)(K) = {(X,E) ∈ H(K)×G(K) : E ⊂ X}.

Lemma 12.6. I(r, d, n) is a closed irreducible subset of H ×G of dimension equal to
(r + 1)(n− r) +

(
n+d
d

)
−
(
r+d
d

)
− 1.

Proof. Let E′ denote the linear subspace ofKn+1 corresponding to E. Let f1, . . . , fr+1

be a basis of E′, extended to a basis (f1, . . . , fn+1) of Kn+1. Any x ∈ E′ defines a
linear form φx on

∧r(Kn+1) given by the formula

x ∧ ω ∧ fr+2 ∧ . . . ∧ fn+1 = φx(ω)f1 ∧ . . . ∧ fn+1.

In particular, if x = λ1f1 + . . . + λr+1fr+1, then taking the wedge product of both
sides with each f1 ∧ . . . ∧ fi−1 ∧ fi+1 ∧ . . . fn+1, we obtain

x = φx(f2∧. . .∧fr+1)f1−φx(f1∧f3∧. . .∧fr+1)f2 +. . .+(−1)rφx(f1∧. . .∧fr)fr+1.

Let (e∗1, . . . , e
∗
n+1) be the dual basis of the canonical basis of Kn+1. Writing φx =∑

αi1...ire
∗
i1
∧ . . . ∧ e∗ir , we get that λi are equal to some linear combinations of the
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Plücker coordinates of E′. Now plugging in (λ0, . . . , λn) into the equation of X , we
see that I(r, d, n) is given by bi-homogeneous polynomials in the coefficients of F and
in the Plücker coordinates of E. This proves that I(r, d, n) is a closed subset of the
product H ×G. Now consider the projection p : I(r, d, n)→ G. For each E ∈ G, the
fibre p−1(E) consists of all hypersurfaces V (F ) containing E. Choose a coordinate
system such that E is given by the equations Tr+1 = . . . = Tn = 0. Then E ⊂ V (F )
if and only if each monomial entering into F with non-zero coefficient contains some
positive power of Ti with i ≥ r + 1. In other words F is defined by vanishing of all
coefficients at the monomials of degree d in the variables T0, . . . , Tr. This gives

(
r+d
r

)
linear conditions on the coefficients of F , hence dim p−1(E) =

(
n+d
d

)
− 1 −

(
r+d
r

)
.

Let us assume that I(r, d, n) is irreducible. By the Theorem on dimension of fibres,

dim I(r, d, n) = dim p−1(E) + dim G = (n− r)(r+ 1) +

(
n+ d

d

)
− 1−

(
r + d

r

)
.

It remains to prove the irreducibility of I(r, d, n). Considering the projection p :
I(r, d, n)→ G, the assertion follows from the following:

Lemma 12.7. Let f : X → Y be a surjective regular map of projective algebraic
sets. Assume that Y is irreducible and all fibres of f are irreducible and of the same
dimension n. Then X is irreducible.

Proof. Let X = X1 ∪ . . . ∪ Xn be the union of irreducible closed sets. Since f is a
map of projective sets, the images f(Xi) are closed and irreducible. By assumption,
Y is irreducible, hence the set I = {i : f(Xi) = Y } is not empty. For every y ∈
Y \ (∪i 6∈If(Xi)), we have f−1(y) = ∪i∈I(Xi ∩ f−1(y)). Since f−1(y) is irreducible,
there exists Xi, i ∈ I, such that f−1(y) ⊂ Xi. Since the set I is finite, we can find
an open subset U ⊂ Y such that f−1(y) ⊂ Xi for all y ∈ U . Let fi : Xi → Y be
the restriction of f to Xi. By the Theorem on dimension of fibres, any fibre of fi is
of dimension ≥ n. By assumption, dim f−1

i (y) ≥ n = dim f−1(y). This implies
that f−1

i (y) = f−1(y) for any y ∈ Y . This certainly implies that Xi = X proving the
assertion.

Theorem 12.8. Assume that

(n− r)(r + 1) <

(
r + d

r

)
.

Then the subset of Hyp(d;n)(K) which consists of hypersurfaces containing a linear
subspace of dimension r is a proper closed subset.
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Proof. Consider the other projection q : I(r, d, n) → H = Hyp(d;n)(K). Since
I(r, d, n) is a projective set, its image is a closed subset of H. Suppose q is surjective.
Then

(n− r)(r+ 1) +

(
n+ d

d

)
− 1−

(
r + d

r

)
= dim I(r, d, n) ≥ dim H =

(
n+ d

d

)
− 1.

This is impossible in view of the assumption of the theorem.

Remark 12.9. One expects that each V (F ) ∈ Hyp(d;n) contains a linear subspace of
dimension r when (n − r)(r + 1) ≥

(
r+d
r

)
. This is true if d > 2 but false if d = 2.

For example let d = 2, n = 4. A nonsingular quadratic form in 5 variables does not
contain isotropic subspaces of dimension 3. Hence the corresponding quadric does not
contain planes. However, (n− r)(r + 1) = 6 ≥

(
r+d
r

)
= 6.

From now on we restrict ourselves with the case n = 3 and d = 3, i.e. cubic
surfaces in P3(K). We shall be looking for lines on cubic surfaces. In this case
(n− r)(r + 1) = 6 >

(
r+d
d

)
= 4, so we expect that every cubic surface has a line. As

we saw in the previous remark it needs to be proven.

Theorem 12.10. (i) Every cubic surface X contains a line.

(ii) There exists an open subset U ⊂ Hyp(3; 3)(K) such that any X ∈ U contains
exactly 27 lines.

Proof. (i) In the notation of the proof of Theorem 12.8, it suffices to show that the
projection map q : I(1, 3, 3)→ Hyp(3; 3)(K) is surjective. Suppose the image of q is
a proper closed subset Y of Hyp(3; 3)(K). Then dim Y < dim Hyp(3; 3)(K) = 19
and dim I(1, 3, 3) = 19. By the theorem on dimension of fibres, we obtain that all
fibres of q are of dimension at least one. In particular, every cubic surface containing
a line contains infinitely many of them. But let us consider the surface X given by
the equation

T1T2T3 − T 3
0 = 0.

Suppose a line ` lies on X. Let (a0, a1, a2, a3) ∈ `. If a0 6= 0, then ai 6= 0, i 6= 0.
On the other hand, every line hits the planes Ti = 0. This shows that ` is contained
in the plane T0 = 0. But there are only three lines on X contained in this plane:
Ti = T0 = 0, i = 1, 2 and 3. Therefore X contains only 3 lines. This proves the first
assertion.

(ii) We already know that every cubic surface X = V (F ) has at least one line.
Pick up such a line `. Without loss of generality we may assume that it is given by
the equation:

T2 = T3 = 0.
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As we saw in the proof of Lemma 12.6:

F = T2Q0(T0, T1, T2, T3) + T3Q1(T0, T1, T2, T3) = 0,

where Q0 and Q1 are quadratic homogeneous polynomials. Each plane π containing
the line ` is given by the equation

λT2 − µT3 = 0

for some scalars λ, µ ∈ K. The intersection π ∩ V (F ) contains the line ` and a curve
of degree 2 in π. More explicitly, choose coordinates t0, t1, t2 in the plane, related to
our coordinates T0, T1, T2, T3 by the formulas:

T0 = t0, T1 = t1, T2 = µt2, T3 = λt2.

Plugging these expression into F , we obtain:

µt2Q0(t0, t1, µt2, λt2) + λt2Q1(t0, t1, µt2, λt2) = 0.

This shows that π ∩ X ⊂ π consists of the line ` with the equation t2 = 0 and the
conic C(λ, µ) with the equation:

µQ0(t0, t1, µt2, λt2) + λQ1(t0, t1, µt2, λt2) = 0.

We may also assume that the line enters with multiplicity one (since we take ‘general’
coeficients of F ). Let

Q0 =
∑

0≤i≤j≤3

aijTiTj , Q1 =
∑

0≤i≤j≤3

bijTiTj .

Then C(λ, µ) is given by the equation:

(µa00+λb00)t20+(µa11+λb11)t21+(µ2(µa22+λb22)+λ2(µa33+λb33))t22+(µa01+λb01)t0t1

+(µ(µa02 + λb02) + λ(µa03 + λb03))t0t2 + (µ2a12 + λµb12 + µλa13 + λ2b13)t1t2 = 0.

Now, let us start vary the parameters λ and µ and see how many reducible conics
C(λ, µ) we obtain. The conic C(λ, µ) is reducible if and only if the quadratic form
defining it is degenerate. The condition for the latter is the vanishing of the discrimi-
nant D of the quadratic form C(λ, µ). Observe that D is a homogeneous polynomial
of degree 5 in λ, µ. Thus there exists a Zariski open subset of Hyp(3; 3) for which this
determinant has 5 distinct roots (λi, µi). Each such solution defines a plane πi which
cut out on X the line ` and a reducible conic. The latter is the union of two lines or
a double line. Again, for some open subset of Hyp(3; 3) we expect that the double
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line case does not occur. Thus we found 11 lines on X: the line ` and 5 pairs of lines
`i, `

′
i lying each lying in the plane πi. Pick up some plane, say π1. We have 3 lines

`, `′, and `′′ in π1. Replacing ` by `′, and then by `′′, and repeating the construction,
we obtain 4 planes through `′ and 4 planes through `′′ not containing `, and each
containing a pair of lines. Altogether we found 3 + 8 + 8 + 8 = 27 lines on X. To see
that all lines are accounted for, we observe that any line intersecting either `, or `′, or
`′′ lies in one of the planes we have considered before. So it has been accounted for.
Now let L be any line. We find a plane π through L that contains three lines L,L′

and L′′ on X. This plane intersects the lines `, `′, and `′′ at some points p, p′ and p′′

respectively. We may assume that these points are distinct. Otherwise we find three
non-coplanar lines in X passing through one point. As we shall see later this implies
that X is singular at this point. Since neither L′ nor L′′ can pass through two of these
points, one of these points lie on L. Hence L is coplanar with one of the lines `, `′, `′′.
Therefore L has been accounted for.

Remark 12.11. Using more techniques one can show that every “nonsingular” (in the
sense of the next lectures) cubic surface contains exactly 27 lines. Let us define the
graph whose vertices are the lines and two vertices are joined by an edge if the lines
intersect. This graph is independent on the choice of a nonsingular cubic surface and
its group of symmetries is isomorphic to the group W (E6) of order 51840 (the Weyl
group of the root system of a simple Lie algebra of type E6).

Problems.

1. Show that the set πx of lines in P3(K) passing through a point x ∈ P3(K) is a
closed subset of G(2, 4) isomorphic to P2(K). Also show that the set πP of lines in
P3(K) contained in a plane P ⊂ P3(K) is a closed subset of G(2, 4) isomorphic to
P2(K).

2. Prove that the subset of quartic surfaces in Hyp(4; 3) which contain a line is an
irreducible closed subset of Hyp(4; 3) of codimension 1.

3. Prove that every hypersurface of degree d ≤ 5 in P4(K) contains a line, and, if
d ≤ 4, then it contains infinitely many lines.

4. Let X be a general cubic hypersurface in P4(K) (general means that X belongs to
an open subset U of Hyp(3; 4)). Show that there exists an open subset V ⊂ X such
that any x ∈ V lies on exactly six lines contained in X.

5*. Let 1 ≤ m1 < m2 < . . . < mr ≤ n+ 1, a flag in Kn+1 of type (m1, . . . ,mr) is a
chain of linear subspaces L1 ⊂ . . . ⊂ Lr with dim Li = mi.

(a) Show that the set of flags is a closed subset in the product of the Grassmannians
G(m1, n + 1) × . . . × G(mr, n + 1). This projective algebraic set is called the
flag variety of type (m1, . . . ,mr) and is denoted by Fk(m1, . . . ,mr;n+ 1).
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(b) Find the dimension of Fk(m1, . . . ,mr;n+ 1).

6. By analyzing the proof of Theorem 13.16 show the following:

(a) The set of 27 lines on a cubic surface X contains 45 triples of lines which lie in
a plane (called a tritangent plane).

(b) There exist 12 lines l1, . . . , l6, l
′
1, . . . , l

′
6 such that l′i∩li = ∅, i = 1, . . . , 6, li∩l′j 6=

∅ if i 6= j. Such a set is called a double-six configuration.

(c)* Show that there are 36 different double-six configurations.

(d) Check all the previous assertions for the Fermat cubic.

7*. Prove that

(a) A general cubic surface V (F ) contains 9 lines `ij , i, j = 1, 2, 3 such that `ij ∩
`km 6= ∅ if and only if i = k or j = m.

(b) Using (a) show that V (F ) can be given by the equation

det

L1 0 M1

M2 L2 0
0 M3 L3

 = 0,

where Li,Mi are linear forms.

(c) Show that the map T : V (F )→ P2 which assigns to a point x ∈ V (F ) the set
of solutions of the equation (t0, t1, t2) · A = 0 is a birational map. Here A is
the matrix of linear from from (b).

(d) Find an explicit formulas for the inverse birational map T−1.

8. Using Problem 5 (b),(c) show that the group W of symmetries of 27 lines consists
of 51840 elements.

9*. Let C be a twisted cubic in P3 (the image of P1 under a Veronese map given
by monomials of degree 3). For any two distinct point x, y ∈ C consider the line
lx,y joining these points. Show that the set of such lines is a locally closed subset of
G(2, 4). Find the equations defining its closure.

10*. Let k = k0(t), where k0 is an algebraically closed field and F (T0, . . . , Tn) ∈
k[T1, . . . , Tn] be a homogeneous polynomial of degree d < n. Show that V (F )(k) 6= ∅
(Tsen’s Theorem).
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Lecture 13

Tangent space

The notion of the tangent space is familiar from analytic geometry. For example, let
F (x, y) = 0 be a curve in R2 and let a = (x0, y0) be a point lying on this surface.
The tangent line of X at the point a is defined by the equation:

∂F

∂x
(a)(x− x0) +

∂F

∂y
(a)(y − y0) = 0.

It is defined only if at least one partial derivative of F at a is not equal to zero. In
this case the point is called nonsingular. Otherwise it is said to be singular.

Another notion of the tangent space is familiar from the theory of differentiable
manifolds. Let X be a differentiable manifold and a be its point. By definition, a
tangent vector ta of X at a is a derivation (or differentiation) of the ring O(X) of
differentiable functions on X, that is, a R-linear map δ : O(X)→ R such that

δ(fg) = f(a)δ(g) + g(a)δ(f) for any f, g ∈ O(X).

It is defined by derivation of a function f along ta given by the formula

< f, ta >=

n∑
i=1

∂f

∂xi
(a)ti

where (t1, . . . , tn) are the coordinates of ta and (x1, . . . , xn) are the local coordinates
of X at the point a.

In this lecture we introduce and study the notion of a tangent space and a non-
singular point for arbitrary algebraic sets or varieties.

For every k-algebra K let K[ε] = K[t]/(t2) be the K-algebra of dual numbers. If
ε is taken to be t mod(t2), then K[ε] consists of linear combinations a+ bε, a, b ∈ K,
which are added coordinate wise and multiplied by the rule

(a+ bε)(a′ + b′ε) = aa′ + (ab′ + a′b)ε.

117
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We denote by

α1 : K[ε]→ K

the natural homomorphism a+ bε→ a. Its kernel is the ideal (ε) = {bε, b ∈ K}.

Definition 13.1. Let X be an affine or a projective algebraic variety over a field k and
x ∈ X(K) be its K-point. A tangent vector tx of F at x is a K[ε]-point tx ∈ X(K[ε])
such that X(α1)(tx) = x. The set of tangent vectors of X at x is denoted by T (X)x
and is called the tangent space of F at x.

Example 13.1. Assume X is an affine algebraic variety given by a system of equations

F1(Z1, . . . , Zn) = 0, . . . , Fr(Z1, . . . , Zn) = 0.

A point x ∈ X(K) is a solution (a1, . . . , an) ∈ Kn of this system. A tangent vector
tx is a solution (a1 + b1ε, . . . , an + bnε) ∈ X(K[ε]) of the same system. Write down
the polynomials Fi(Z) in the form :

Fi(Z1, . . . , Zn) = Gi(Z1 − a1, . . . , Zn − an)

=
n∑
j=1

α
(i)
j (Zj − aj) +

n∑
j,k=1

α
(i)
jk (Zj − aj)(Zk − ak) + . . . .

(Taylor’s expansion). Note that the Gi’s do not contain the constant term because

(a1, . . . , an) ∈ X(K). By definition, the coefficient α
(i)
j is the partial derivative of Fi

with respect to Zj at the point x = (a1, . . . , an). It is denoted by ∂Fi
∂Zj

(x). Obviously,

it is an element of K. Now we plug the point (a1 +b1ε, . . . , an+bnε) into the previous
equations to obtain

Fi(a1+b1ε, . . . , an+bnε) =
n∑
j=1

α
(i)
j biε+

n∑
j,k=1

α
(i)
jk bibjε

2+(. . . .)ε3+. . . =
n∑
j=1

α
(i)
j biε = 0.

From this we deduce that (b1, . . . , bn) satisfies the system of linear homogeneous
equations:

n∑
j=1

∂Fi
∂Zj

(x)bj = 0, i = 1, . . . , r. (13.1)

Thus the set of tangent vectors T (X)x is bijective to the submodule of Kn which
consists of solutions of a homogeneous system of linear equations. In particular, we
have introduced the structure of a K-module on T (X)x.
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Example 13.2. Assume X = Pnk is the n-dimensional projective space over k. Let
x = (a0, . . . , an) ∈ Pnk(K), where K is a field. A tangent vector at x is a local line M
over K[ε] such that M/εM = (a0, . . . , an)K. Since the ring K[ε] is obviously local,
M is a global line given by coordinates (a0 +t0ε, . . . , an+tnε). Note that 1 =

∑
i biai

for some bi ∈ K, and therefore
∑

i bi(ai + εti) = 1 + ε(
∑

i biti) ∈ K[ε]∗. This shows
that K[ε](a0 + εt0, . . . , an + εtn) is a global line for any (t0, . . . , tn) and M ∈ T (Pnk)x
is determined by (t0, . . . , tn) up to the equivalence relation defined by

(t0, . . . , tn) ∼ (t′0, . . . , t
′
n) iff (a0 + εt0, . . . , an + εtn) = (a0 + εt′0, . . . , an + εt′n)

in Pnk(K[ε]). The latter means that

(a′0 + εt′0, . . . , a
′
n + εt′n) = (λ+ µε)(a0 + εt0, . . . , an + εtn)

for some λ+ µε ∈ K[ε]∗ (i.e. λ ∈ K∗, µ ∈ K). This implies that

(a′0, . . . , a
′
n) = λ(a0, . . . , an), (t′0, . . . , t

′
n) = λ(t0, . . . , tn) + µ(a0, . . . , an).

Let Lx be the line in Kn+1 corresponding to x. We see that a tangent vector tx
defines a homomorphism Lx → Kn+1/Lx by assigning to (a0, . . . , an) ∈ Lx the coset
of (t0, . . . , tn) modulo Lx. Thus there is a natural bijection

T (Pnk)x → Homk(Lx,K
n+1/Lx).

Since the right-hand side has a natural structure of a rank n free module over K, we
can transfer this structure to T (Pnk)x.

Example 13.3. Let X = GLn,k be the affine algebraic variety with GLn,k(K) =
GL(n,K). A point of GLn,k(K[ε]) is a matrix A + εB, where A ∈ GL(n,K), B ∈
Matn(K).

If we take x ∈ X(K) to be the identity matrix In, we obtain that T (X)In can be
identified with Matn(K). Now, take X = SLn,k with X(K) = SL(n, k). Then

T (X)In = {In + εB ∈ GL(n,K[ε]) : det(In + εB) = 1} =

{In + εB ∈ GL(n,K[ε]) : Trace(B) = 0}.

Thus we can identify T (SLn,k)In with the vector space of matrices with entries in K
with trace equal to zero.

Now let us take X = On,k with On,k = {A ∈ Matn(K) : A · tA = In}. We get

T (X)In = {In + εB ∈ Mat(n,K[ε]) : (In + εB)(In + εtB) = In} =

{In + εB ∈ GL(n,K[ε]) : B + tB = 0}.
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Thus we can identify T (On,k)In with the vector space of skew-symmetric matrices
with entries in K. Note that the choice of K depends on identification of In with a
K-point.

The tangent space of an algebraic group at the identity point has a structure of a
Lie algebra defined by the Lie bracket.

Remark 13.4. For any functor F from the category of k-algebras to the category of
sets one can define the tangent space of F at a “point” x ∈ F (K) as the set of
elements t of the set F (α)(t) = x.

Now, if we have a projective variety X given by a system of homogeneous equations
F1 = · · · = Fk = 0, we obtain that

T (X)x = {a + bε ∈ T (Pnk)x : F1(a + bε) = · · · = Fk(a + bε) = 0.}

By using the Taylor expansion, as in Example 13.1, we obtain that b = (b0, . . . , bn)
satisfies a system of homogeneous linear equations:

n∑
j=0

∂Fi
∂Tj

(a)bj = 0, i = 1, . . . , k. (13.2)

Recall that a tangent vector is determined by b = (b0, . . . , bn) only up to adding a
vector proportional to a = (a0, . . . , an). Thus a must satisfy the previous system of
linear equations. But this is clear. For any homogeneous polynomial F (T0, . . . , Tn) of
degree d we have (easily verified) Euler’s identity

dF (t0, . . . , Tn) =
n∑
j=0

Ti
∂F

∂Tj
. (13.3)

This gives

0 = diFi(a0, . . . , an) =
n∑
j=0

ai
∂F

∂Tj
(a), i = 1, . . . , k,

where di is the degree of Fi.
As we saw the tangent space of an affine or a projective variety has a structure of

a linear space. However, it is not clear that this structure is independent of a choice of
the system of equations defining X. To overcome this difficulty, we shall give another,
more invariant, definition of T (X)x.

Let A be a commutative k-algebra and let M be A-module. A M -derivation of
A is a linear map of the corresponding k-linear spaces δ : A → M such that for all
a, b ∈ A

δ(ab) = aδ(b) + bδ(a).
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The set of M -derivations is denoted by Derk(A,M). It has a natural structure of a
A-module via

(aδ)(b) = aδ(b) for all a, b ∈ A.

We will be interested in a special case of this definition.

Lemma 13.5. If f : A → B is a homomorphism of k-algebras, and δ : B → M is a
M -derivation of B, then the composition δ ◦ f : A → B → M is a M[f ]-derivation
of A, where M[f ] is the A-module obtained from M by the operation of restriction of
scalars (i.e., a ·m = f(a)m for any a ∈ A,m ∈M).

Proof. Trivial verification of the definition.

Let us apply this to our situation. Note that the k-linear map:

α2 : K[ε]→ K, a+ bε→ b

is a K-derivation of K[ε] considered as a K-algebra. Here K is considered as a K[ε]-
module by means of the homomorphism φ1 : K[ε] → K, a + bε 7→ a. We identify a
K-point x ∈ X(K) with a homomorphism of k-algebras evx : O(X)→ K, φ 7→ φ(x).
A tangent vector tx ∈ T (X)x is identified with a homomorphism evtx : O(X)→ K[ε].
Its composition with the derivation α2 : K[ε] → K, a + bε 7→ b, is a K-derivation
of k[X]. Here K is considered as a O(X)-module via the homomorphism evx. This
defines a map:

T (X)x → Derk(O(X),K)x

where the subscript x stands to remind us about the structure of a O(X)-module on
K. By definition,

Derk(O(X),K)x = {δ ∈ Homk(O(X),K) : δ(pq) = p(x)δ(q)+q(x)δ(p), ∀p, q ∈ O(X)}.

Lemma 13.6. Assume X is an affine algebraic k-set. The map

T (X)x → Derk(O(X),K)x

is a bijection.

Proof. Let δ ∈ Derk(O(X),K)x. We define a map fδ : O(X)→ K[ε] by the formula:

fδ(p) = p(x) + εδ(p).

It is easy to verify that fδ is a homomorphism, and its composition with α1 : K[ε]→ K
is equal to evx. Thus fδ defines a tangent vector at x and the formula δ 7→ fδ makes
the inverse of our map.
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Now Derk(O(X),K)x has a structure of a K-module, defined by the formula
(aδ)(p) = aδ(p) for any a ∈ K, p ∈ O(X). We transfer this structure to T (X)x by
means of the bijection from Lemma 13.6. This structure of a K-module on T (X)x
is obviously independent (up to isomorphism) on the choice of equations defining X.
We leave to the reader to verify that this structure agrees with the one defined in the
beginning of the lecture.

Let us specialize our definition to the case when x ∈ X(k) (a rational point of
X). Then the kernel of the homomorphism x : O(X) → k is a maximal ideal mx of
O(X) and O(X)/mx

∼= k. Let δ ∈ Derk(O(X), k) be a k-derivation of O(X). For
any p, q ∈ mx, we have

δ(p · q) = p(x)δ(q) + q(x)δ(p) = 0.

Thus the restriction of δ to m2
x is identical zero.

Lemma 13.7. Assume x ∈ X(k). The restriction map δ → δ|mx, defines an isomor-
phism of k-linear spaces

T (X)x → Homk(mx/m
2
x, k).

Proof. Since O(X)/m2
x has a natural structure of a k-algebra there is a canoni-

cal homomorphism k → O(X)/m2
x such that its composition with the factor map

O(X)/m2
x → O(X)/mx = k is the identity. We shall identify k with the sub-

ring of O(X)/m2
x by means of this map so that the restriction of the factor map

O(X)/m2
x → O(X)/mx to k is the identity. For any p ∈ O(X) we denote by px

the residue of p mod m2
x. Obviously, px − p(x) ∈ mx/m

2
x, so that for every linear

function f ∈ Homk(mx/m
2
x, k) we can define the map δ : mx/m

2
x → k by setting for

any p ∈ O(X)
δ(p) = f(px − p(x)).

Since for any p, q ∈ O(X), (px − p(x))(qx − q(x)) ∈ m2
x, we have

δ(pq) = f(pxqx−p(x)q(x)) = f((px−p(x))(qx−q(x))+p(x)(qx−q(x))+q(x)(px−p(x)))

= f(p(x)(qx − q(x)) + q(x)(px − p(x))) = p(x)f(qx − q(x)) + q(x)f(px − p(x)))

= p(x)δ(q) + q(x)δ(p).

We leave to the reader to verify that the constructed map f 7→ δ is the needed
inverse.

Let f : X → Y be a morphism of algebraic k-varieties (affine or projective).
Let x ∈ X(K), and y = fK(x) ∈ Y (K). By definition of a morphism, the map
fK[ε] : X(K[ε])→ Y (K[ε]) induces a natural map

(df)x : T (X)x → T (Y )y.
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It is called the differential of f at the point x. If f : X → Y is a morphism of affine
k-varieties corresponding to a homomorphism f∗ : O(Y ) → O(X) of k-algebras,
x ∈ X(K), y = fK(x) ∈ Y (K), then, after we use the bijection from Lemma 13.6, it
is immediately verified that the differential (df)x coincides with the map

Derk(O(X),K)x → Derk(O(Y ),K)y

defined in Lemma 13.5, where f is the homomorphism f∗ : O(Y ) → O(X). This is
obviously a K-linear map.

Proposition 13.8. (Chain Rule). Let f : X → Y, g : Y → Z be morphisms of
algebraic k-varieties, x ∈ X(K), y = f(x) ∈ Y (K). Then

d(g ◦ f)x = (dg)y ◦ (df)x.

Proof. Immediately follows from the definition of a morphism.

Now we can define the tangent space for any quasi-projective algebraic set V ⊂
Pn(K). Here K, as usual, is a fixed algebraically closed field containing k. First, we
assume that V is affine. Choose an affine algebraic K-variety X such that I(X) is
radical and X(K) = V . Then we define the the tangent space T (V )x of V at x by
setting

T (V )x = T (X)x.

By Lemma 13.7, for every x ∈ V we have an isomorphism of K-linear spaces.

T (X)x ∼= Derk(O(X),K).

Since an isomorphism of affine varieties is defined by an isomorphism of their coordinate
algebras, we see that this definition is independent (up to isomorphism of linear spaces)
of a choice of equations defining X.

Lemma 13.9. Let A be a commutative K-algebra, M an A-module, and S a multi-
plicatively close subset of A. There is an isomorphism of AS-modules

Derk(A,M)S ∼= Derk(AS ,MS)

Proof. Let δ : A → M be a derivation of A. We assign to it the derivation of AS
defined by the familiar rule:

δ
(a
s

)
=
δ(a)s− δ(s)a

s2
.

This definition does not depend on the choice of a representative of the fraction a
s . In

fact, assume s′′(s′a− sa′) = 0. Then

0 = s′′δ(s′a− sa′)− (s′a− sa′)δ(s′′) = s′′[δ(s′a)− δ(sa′)] + (as′ − a′s)δ(s′′).



124 LECTURE 13. TANGENT SPACE

Multiplying both sides by s′′, we obtain

s′′2[δ(s′a)− δ(sa′)] = 0. (13.4)

Let us show that this implies that

s′′2[s2(s′δ(a′)− a′δ(s′))] = s′′2[s′2(sδ(a)− aδ(s))].

This will proves our assertion. The previous identity is equivalent to the following one

s′′2[s2s′δ(a′)− s′2sδ(a)] = s′′2[s2a′δ(s′)− s′2aδ(s)],

or
s′ss′′2[sδ(a′)− s′δ(a)] = ss′s′′2[aδ(s′)− a′δ(s)].

Now this follows from equality (13.4) after we multiply it by ss′.
So we have defined a homomorphism of A-modules Derk(A,M)→ Derk(AS ,MS).

It induces a map of AS-modules Derk(A,M)S → Derk(AS ,MS). The inverse of this
map is defined by using Lemma 13.5 applied to the homomorphism A→ AS .

Let us apply the previous lemma to our situation. Let X be an affine k-variety,
x ∈ X(K), p = Ker(evx). Assume that K is a field. Then the ideal p is prime
since O(X)/p is isomorphic to a subring of K. Consider K as a module over O(X)
by means of the homomorphism evx. Let S = O(X) \ p. Then KS = K since the
image of S under evx does not contain 0. It is easy to see that the linear K-spaces
Der(O(X),K)p and Der(O(X),K) are isomorphic (the map ∂

s 7→ evx(s)−1∂ is the
isomorphism). Applying Lemma 13.9, we obtain an isomorphism of vector K-spaces

T (X)x = Derk(O(X),K)x ∼= Derk(O(X)p,K). (13.5)

The previous isomorphism suggests a definition of the tangent space of any quasi-
projective algebraic k-set X.

Definition 13.2. The local ring of X at x ∈ X is the factor set

OX,x =
⋃
x∈U
O(U)/R

where U runs through the set of all open affine neighborhoods of x and the equivalence
relation R is defined as follows:

Let f ∈ O(U), g ∈ O(V ), then

f ≡ g ⇐⇒ f
∣∣W = g

∣∣W for some open affine neighborhood of x contained in U ∩ V .
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We shall call the equivalence class of f ∈ O(U), the germ of f at x. The structure of
a ring in OX,x is induced by the ring structure of any O(U). We take two elements of
OX.x, represent them by regular functions on a common open affine subset, multiply
or add them, and take the germ of the result. Let mX,x be the ideal of germs of
functions f ∈ O(U) which vanish at x.

It follows from the definition that, for any open affine neighborhood U of x, the
natural map O(U)→ OX,x, φ 7→ φx defines an isomorphism

OU,x ∼= OX,x.

Lemma 13.10. (i) mX,x is the unique maximal ideal of OX,x.

(ii) If X is affine and irreducible, the canonical homomorphism O(X) → OX,x
induces an isomorphism O(X)p ∼= OX,x, where px = Ker(evx).

(iii) If X is affine, the canonical homomorphism O(X)→ OX,x induces an isomor-
phism of fields k(x) := Q(O(X)/px)→ OX,x/mX,x.

Proof. (i) It suffices to show that every element α ∈ OX,x \ mX,x is invertible. Let
α = fx, where f is regular on a some open affine set U containing x. Since f(x) 6= 0, x
is contained in the open principal affine subset V = D(f) of U . Hence the restriction
g of f to V is invertible in O(V ). The germ gx = fx is now invertible.

(ii) For any φ ∈ O(X) \ px its germ in OX,x is invertible. By the universal
property of localizations, this defines a homomorphism O(X)px → OX,x. An element
of the kernel of this homomorphism is a function whose restriction to some open
neighborhood of x is identically zero. Since X is irreducible, this implies that the
function is zero. Let fx ∈ OX,x be the germ of a function f ∈ O(U), where U is an
open affine neighborhood of x. Replacing U by a principal open subset D(φ) ⊂ U ,
we may assume that U = D(φ) and f = F/φn, where F, φ ∈ O(X). Since φ(x) 6= 0,
we get that φ does not belong to px, and hence f ∈ O(X)px and its germ at x equals
fx. This proves the surjectivity.

(iii) This follows easily from the definition of the localization ring Ap for any ring
A and a prime ideal p. The homomorphism A→ Ap, a 7→ a

1 defines a homomorphism
A/p → Ap/pAp. The target space is a field. By the universal property of fields of
fractions, we get a homomorphism of fields g : Q(A/p) → Ap/pAp. Let a

s + pAp ∈
Ap/pAp. Then it is the image of the fraction a+p

s+p ∈ Q(A/p). This shows that g is
bijective.

The previous isomorphism allows us to define the tangent space for any quasi-
projective k-set X by

T (X)x = Derk(OX,x,K). (13.6)
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In the case when x ∈ X(k), choosing an open affine neighborhood of x and applying
Lemma 13.7, we obtain

T (X)x = Homk(mX,x/m
2
X,x, k). (13.7)

For any rational point x ∈ X(k), the right-hand side of (13.7) is called the Zariski
tangent space of X at x.

Let f : X → Y be a regular map of algebraic k-sets, x ∈ X and y = f(x). Let
V be an open affine neighborhood of y and U be an open affine neighborhood of x
contained in f−1(V ). The restriction of f to U defines a regular map f : U → V . For
any φ ∈ O(V ), the composition with f defines a regular function f∗(φ) on U . Let
f∗(φ)x ∈ OU,x be its germ at x. The homomorphism f∗ : O(V )→ OU,x extends to a
homomorphism f∗ : OV,y → OU,x of the local rings. It is clear that f∗(mV,y) ⊂ mU,x.
Composing this homomorphism with the isomorphisms OX,x ∼= OU,x and OY,y ∼= OV,y
we get a homomorphism of local rings

f∗x,y : OY,y → OX,x. (13.8)

Applying Lemma 13.5, we get a K-linear map

TX,x = Derk(OX,x,K)→ TY,y = Derk(OY,y,K),

which we call the differential of f at the point x and denote by dfx.
Let X ⊂ Pnk(K) be an quasi-projective algebraic k-set and T (X)x be the tangent

space at its point x ∈ X(K). It is a vector space over K of finite dimension. In fact,
it is a subspace of T (Pn(K))x ∼= Kn and hence

dimK T (X)x ≤ n. (13.9)

If x is contained in an affine open subset U which is isomorphic to a closed subset of
some An(K), then T (X)x is a subspace of T (An(K))x ∼= Kn and

dimK T (X)x ≤ n.

It follows from (13.9) that X is not isomorphic to a quasi-projective subset of Pnk(K)
for any n < dimK T (X)x.

Example 13.11. Let X be the union of the three coordinate axes in A3(K). It is
given by the system

Z1Z2 = Z1Z3 = Z2Z3 = 0.

The tangent space at the origin x = (0, 0, 0) is the whole tangent space T (A3(K))x ∼=
K3. Thus dimK T (X)x = 3. This shows that X is not isomorphic to the union of
three lines in A2(K).
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Let us now show that dimK T (X)x ≥ dimX for any irreducible algebraic set X
and the equality takes place for almost all points x (i.e., for all points belonging to a
Zariski open subset of X). For this, we may obviously assume that X is affine.

Let V = X(K) for some affine variety defined by a radical ideal in k[Z1, . . . , Zn].
The set T (V ) = X(K[ε]) is a subset of K[ε]n which can be thought as the vector
space K2n. It is easy to see that T (X) is a closed algebraic subset of K2n and the
map p = X(φ) : T (X)→ X, is a regular map (check it !). Note that the fibre p−1(x)
is equal to the tangent space T (X)x. Applying the theorem about the dimension of
fibres of a regular map, we obtain

Proposition 13.12. There exists a number d such that

dimK T (X)x ≥ d

and the equality takes place for all points x belonging to an open subset of X.

We will show that the number d from above is equal to dimX.

Lemma 13.13. Let K be an algebraically closed field of characteristic p. Let F ∈
K[Z1, . . . , Zn] with all the partial derivatives ∂F/∂Zi equal to zero. If p = 0, then F
is a constant polynomial. If p > 0, then F = Gp for some polynomial G.

Proof. Write F =
∑

r arZ
r. Then

∂F

∂Zi
=
∑

r

ar(r • ei)Zr−ei

where • denotes the dot product of vectors and ei is the i-th unit vector. If this
polynomial is equal to zero, then ar(r • ei) = 0 for all r. Assume that ar 6= 0. If
char(k) = 0 this implies that r • ei = 0. In particular, if all ∂F

∂Zi
= 0, we get r = 0,

i.e., F is a constant polynomial. If char(k) = p > 0, we obtain that p divides r • ei,
i.e., r = pr′ for some vector r′. Thus

F =
∑

r

arZ
r =

∑
r

ar(Zr′)p = (
∑

r

a
1/p
r Zr′)p = Gp,

where G =
∑

r a
1/p
r Zr′ .

Theorem 13.14. Let X be an irreducible algebraic set and d = min{T (X)x}. Then

d = dimX.
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Proof. Obviously, it suffices to find an open subset U of X where dimK T (X)x =
dimX for all x ∈ U . Replacing X by an open affine set, we may assume that X is
isomorphic to an open subset of a hypersurface V (F ) ⊂ An(K) for some irreducible
polynomial F (Theorem 4.10 of Lecture 4). This shows that we may assume that
X = V (F ). For any x ∈ X, the tangent space T (X)x is given by one equation

∂F

∂Z1
(x)b1 + . . .+

∂F

∂Zn
(x)bn = 0.

Clearly, its dimension is equal to n− 1 = dimX unless all the coefficients are zeroes.
The set of common zeroes of the polynomials ∂F

∂Zi
is a closed subset of An(K) contained

in each hypersurface V ( ∂F∂Zi
). Obviously, ∂F

∂Zi
6∈ (F ) unless it is equal to zero (compare

the degrees). Now the assertion follows from Lemma 13.13.

Obviously, the assertion of the previous theorem is not true for a reducible set. To
see this it is sufficient to consider the union of two sets of different dimension. It is
easy to modify the statement to extend it to the case of reducible sets.

Definition 13.3. The dimension of X at a point x is the maximum dimxX of the
dimensions of irreducible components of X containing x.

Corollary 13.15. Let X be an algebraic set and x ∈ X. Then

dimK T (X)x ≥ dimxX.

Proof. Let Y be an irreducible component of X containing x. Obviously, T (Y )x ⊂
T (X)x. Hence

dimx Y ≤ dimK T (Y )x ≤ dimK T (X)x.

This proves the assertion.

Definition 13.4. A point x of an algebraic set X is said to be nonsingular (or simple, or
smooth) if dimK T (X)x = dimxX. Otherwise, it is said to be singular. An algebraic
set X is said to be nonsingular (or smooth) if all its points are nonsingular. Otherwise
X is said to be singular.

We already know how to recognize whether a point is nonsingular.

Theorem 13.16. (The Jacobian criterion of a nonsingular point). Assume that X is
an affine algebraic k-set given by a system of equations F1(Z) = . . . = Fr(Z) = 0 in
An(K). Then x ∈ X is nonsingular if and only if rk J(x) = n− dimxX, where

J(x) =


∂F1
∂Z1

(x) . . . ∂F1
∂Zn

(x)

. . . . . . . . .

. . . . . . . . .
∂Fr
∂Z1

(x) . . . ∂Fr
∂Zn

(x)

 .
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Problems.

1. Assume k = K is algebraically closed field of characteristic 0. Show that, up to a
projective automorphism of P2(K), there are only two irreducible singular plane cubic
curves.

2. Prove that T (X × Y )(x, y) ∼= T (X)x ⊕ T (Y )y. Using this show that if x is a
nonsingular point of X and y is a nonsingular point of Y , then (x, y) is a nonsingular
point of X × Y .

3. Let X be a closed subset of An(K), x = (a1, . . . , an) ∈ X and f : A1(K)→ An(K)
given by t 7→ (b1t + a1, . . . , bnt + an). Let (Zr) be the ideal of O(A1(K)) ∼= k[Z]
generated by the functions f∗(φ), φ ∈ I(X). Show that (a1 + b1ε, . . . , an + bnε) ∈
K[ε]n is a tangent vector of X if and only if r > 1. Note that r can be interpreted as
the intersection multiplicity of X and the line f(A1(K)) at x.

4. Suppose a hypersurface X = V (F ) of degree > 1 in Pn(K) contains a linear
subspace E of dimension r ≥ n/2. Show that X has singular points contained in E.

5. Find singular points of the Steiner quartic V (T 2
0 T

2
1 + T 2

1 T
2
2 + T 2

0 T
2
2 − T0T1T2T3)

in P3(K).

6. Let X be a surface in P3(K). Assume that X contains three non-coplanar lines
passing through a point x ∈ X. Show that this point is singular.

7. Let Gk(r+1, n+1) be the Grassmann variety over k. For every M ∈ Gk(r+1, n+
1)(K) show that the tangent space of Gk(r + 1, n + 1) at M is naturally identified
with HomK(M,Kn+1/M).
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Lecture 14

Local parameters

In this lecture we will give some other properties of nonsingular points. As usual we
fix an algebraically closed field K containing k and consider quasi-projective algebraic
k-sets, i.e. locally closed subsets of projective spaces Pnk(K).

Recall that a point x ∈ X is called nonsingular if dimK T (X)x = dimxX. When
x ∈ X(k) is a rational point, we know that T (X)x ∼= Homk(mX,x/m

2
X,x, k). Thus a

rational point is nonsingular if and only if

dimk mX,x/m
2
X,x = dimxX.

Let us see first that dimxX = dimOX,x. The number dimOX,x is denoted often
by codimxX and is called the codimension of the point x in X. The reason is simple.
If X is affine and px = Ker(evx), then we have

dimO(X)p = sup{r : ∃ a chain px = p0 ) . . . ) pr of prime ideals in O(X)}.

This follows from the following.

Lemma 14.1. Let p be a prime ideal in a ring A. Then

dimAp = sup{r : ∃ a chain p = p0 ) . . . ) pr of prime ideals in A}.

Proof. Let qr ⊂ . . . ⊂ q0 be the largest increasing chain of prime ideals in Ap. We
may assume that q0 is the maximal ideal m of A. Let pi be the pre-image of qi in A
under the natural homomorphism A → Ap. Since p0 = p, we get a chain of prime
ideals p = p0 ⊃ . . . ⊃ pr. Conversely, any chain of such ideals in A generates an
increasing chain of prime ideals in Ap. It is easy to see that piAq = pi+1Ap implies
pi = pi+1. This proves the assertion.

In commutative algebra the dimension of Ap is called the height of the prime ideal
p.

131
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Proposition 14.2.
codimxX + algdimk k(x) = dimxX.

Proof. We use induction on dimxX. Let p = Ker(evx). If dimxX = 0, an open
affine neighborhood of x consists of finitely many points, p is a maximal ideal, k(x) is
algebraic over k, and codimxX = 0. This checks the assertion in this case. Assume
the assertion is true for all pairs (Y, y) with dimy Y < dimxX. If p = {0}, then
k(x) = Q(O(X)) and algdimk k(x) = dimX. Obviously, codimxX = 0. This checks
the assertion in this case. Assume that p 6= {0}. Let X ′ be an irreducible component
of X of dimension dimxX which contains x. Take an nonzero element φ ∈ p which
does not vanish on X ′ and consider the closed subset V (φ) of X ′ containing x. By
Krull’s Theorem, the dimension of each irreducible component of V (φ) is equal to
dimX ′ − 1 = dimxX − 1. Let Y be an irreducible component of V (φ) containing
x and let q be the prime ideal in O(X) of functions vanishing on Y . There exists a
strictly decreasing chain of length codimxY of prime ideals in O(Y ) descending from
the image of p in O(Y ) = O(X)/q. Lifting these ideals to prime ideals in O(X) and
adding q as the last ideal we get a chain of length 1 + codimxY of prime ideals in
O(X) descending from p. By induction,

codimxY + algdimk k(x) = dimx Y = dim X − 1.

Under the natural homomorphism OX,x → OY,x, the maximal ideal mX,x generates
the maximal ideal mY,x. This easily implies that the residue field of x in X and in Y
are isomorphic. This gives

codimxX+algdimk k(x) ≥ 1+codimxY +algdimk k(x) = 1+dimxX−1 = dimxX.
(14.1)

Recall that algdimk k(x) = dimO(X)/p. Any increasing chain of prime ideals in
O(X)/p can be lifted to an increasing chain of prime ideals in O(X) beginning at p,
and after adding a chain of prime ideals descending from p gives an increasing chain of
prime ideals in O(X). This shows that codimxX+algdimk k(x) ≤ dimxX. Together
with the inequality (14.1), we obtain the assertion.

Corollary 14.3. Assume that k(x) is an algebraic extension of k. Then

dimOX,x = dimxX.

Now we see that a rational point is nonsingular if and only if

dimk mX,x/m
2
X,x = dimOX,x.

Proposition 14.4. Let (A,m) be a Noetherian local ring. Then

dimκm/m
2 ≥ dimA.
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Proof. We shall prove it only for geometric local rings, i.e., when A ∼= Bp, where B
is a finitely generated k-algebra B and p is a prime ideal in B. This will be enough
for our applications. Thus we may assume that B = O(X) for some affine algebraic
k-variety X and p corresponds to some irreducible subvariety Y of X. Let K be some
algebraically closed field containing the field of fractions Q(O(X)/p). The canonical
homomorphism O(X) → O(X)/p → Q(O(X)/p) → K defines a point x of the
algebraic k-set X(K) with k(x) = Q(O(X)/p). Thus we see that any geometric local
ring is isomorphic to the local ring OX,x of some affine algebraic k-set and its point
x.

Let X1 be an irreducible component of X(K) of dimension equal to dimX which
contains x. Since alg.dimkO(X)/p = dimO(X)/p = dimY , we see that

dimOX,x = dimxX − dimY = dimX1 − dimY.

Suppose a1, . . . , an generate the maximal ideal ofOX,x. Let U be an open affine neigh-
borhood of x such that a1, . . . , an are represented by regular functions φ1, . . . , φn on U .
Clearly, Y ∩U = V (φ1, . . . , φn). Applying Krull’s Hauptsatz, we obtain that dimY =
dimV (φ1, . . . , φn) ≥ dimX1 − n. This implies dimOX,x = dimX1 − dimY ≤ n
which proves the assertion. In fact, this proof gives more. By choosing elements
from φ1, . . . , φn such that each φ does not vanish on any irreducible component of
V (φ1, . . . , φi−1) containing x, we obtain that V (φ1, . . . , φn) = dimY , where n =
codimxX. Thus, Y is an irreducible component of V (φ1, . . . , φn). Let q1, . . . , qr be
prime ideals corresponding to other irreducible components of V (φ1, . . . , φn). Let U be
an open subset of X obtained by deleting the irreducible components of V (φ1, . . . , φn)
different from Y . Then, replacing X with U , we may assume that V (φ1, . . . , φn) = Y .
Thus p = rad(φ1, . . . , φn) and replacing φi’s with their germs ai in OX,x we obtain
that m = rad(a1, . . . , an).

Definition 14.1. A Noetherian local ring (A with maximal ideal m) and residue field
κ = A/m is called regular if dimκ(m/m2) = dimA.

Thus a rational point x is nonsingular if and only if the local ring OX,x is regular.
For any point x ∈ X (not necessary rational) we define the Zariski tangent space

to be
Θ(X)x = Homk(x)(mX,x/m

2
X,x, k(x))

considered as a vector space over the residue field k(x) = OX,x/mX,x.
We define the embedding dimension of X at x by setting

embdimxX = dimk(x) Θ(X)x.

Note that for a rational point we have

T (X)x = Θ(X)x ⊗k K. (14.2)
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In particular, for a rational point x we have

dimK T (X)x = embdimxX. (14.3)

Definition 14.2. A point x ∈ X is called regular if OX,x is a regular local ring, i.e.

embdimxX = codimxX.

Remark 14.5. We know that a rational point is regular if and only if it is nonsingular.
In fact, any nonsingular point is regular (see next Remark) but the converse is not
true. Here is an example. Let k be a field of characteristic 2 and a ∈ k which is not
a square. Let X be defined in A2

k(K) by the equation Z2
1 + Z3

2 + a = 0. Taking the
partial derivatives we see that (

√
a, 0) ∈ K2 is a singular point. On the other hand,

the ring OX,x is regular of dimension 1. In fact, the ideal p = Ker(evx) is a maximal
ideal generated by the cosets of Z2

1 + a and Z2. But the first coset is equal to the
coset of Z3

2 , hence p is a principal ideal generated by Z2. Thus mX,x is generated by
one element and OX,x is a regular ring of dimension 1.

Remark 14.6. If x is not a rational point, equality (14.3) may not be true. For example,
let k = C, K be the algebraic closure of the field k(t) and consider X = Ak(K). A
point x = t defines the prime ideal p = {0} = Ker(evx) (because t is not algebraic
over k). The local ring OX,x is isomorphic to the field of fractions of k[Z1]. Hence its
maximal ideal is the zero ideal and the Zariski tangent space is 0-dimensional. However,
dimK T (X)x = 1 since X is nonsingular of dimension 1. Thus Θ(X)x 6= T (X)x.

However, it is true that a nonsingular point is regular if we assume that k(x) is a
separable extension of k (see the proof below after (14.10)).

Let us give another characterization of a regular local ring in terms of generators
of its maximal ideal.

Lemma 14.7. (Nakayama). Let A be a local ring with maximal ideal m, and let M
be a finitely generated A-module. Assume that M = N + mM for some submodule
N of M . Then M = N .

Proof. Replacing M by the factor module M/N , we may assume that N = 0. Let
f1, . . . , fr be a set of generators of M . Since mM = M , we may write

fi =
r∑
j=1

aijfj , i = 1, . . . , r,

for some aij in m. Let R = (aij) be the matrix of coefficients. Since (f1, . . . , fr) is a
solution of the homogeneous system of equations R · x = 0, by Cramer’s rule,

det(R)fi = 0, i = 1, . . . , r.
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However, det(R) = (−1)r + a for some a ∈ m (being the value of the characteristic
polynomial of R at 1). In particular det(R) is invertible in A. This implies that fi = 0
for all i, i.e., M = {0}.

Corollary 14.8. 1. Let A be a local Noetherian ring and m be its maximal ideal.
Elements a1, . . . , ar generate m if and only if their residues modulo m2 span m/m2 as
a vector space over k = A/m. In particular, the minimal number of generators of the
maximal ideal m is equal to the dimension of the vector space m/m2.

Proof. Let M = m, N = (a1, . . . , ar). Since A is Noetherian, M is a finitely generated
A-module and N its submodule. By the assumption, M = mM+N . By the Nakayama
lemma, M = N .

Corollary 14.9. The maximal ideal of a Noetherian local ring of dimension n cannot
be generated by less than n elements.

Proof. This follows from Proposition 14.4.

Definition 14.3. A system of parameters in a local ring A is a set of n = dimA
elements (a1, . . . , an) generating an ideal whose radical is the maximal ideal, i.e.,

ms ⊂ (a1, . . . , an) ⊂ m

for some s > 0).

It follows from the proof of Proposition 14.4 that local rings OX,x always contain
a system of parameters. A local ring is regular, if and only if it admits a system of
parameters generating the maximal ideal. Such system of parameters is called a regular
system of parameters.

Let a1, . . . , an be a system of parameters in OX,x, Choose an U be an open affine
neighborhood of x such that a1, . . . , an are represented by some regular functions
φ1, . . . , φn on U . Then V (φ1, . . . , φn) ∩ U is equal to the closure of x in U corre-
sponding to the prime ideal p ⊂ O(U) such that OX,x ∼= O(U)p). In fact, the radical
of (φ1, . . . , φn) must be equal to p.

Example 14.10. 1. Let X be given by the equation Z2
1 + Z3

2 = 0 and x = (0, 0).
The maximal ideal mX,x is generated by the residues of the two unknowns. It is easy
to see that this ideal is not principal. The reason is clear: x is a singular point of X
and embdimxX = 2 > dimxX = 1. On the other hand, if we replace X by the set
given by the equation Z2

1 + Z3
2 + Z2 = 0, then mX,x is principal. It is generated by

the germ of the function Z1. Indeed, Z2
1 = −Z2(Z2

2 + 1) and the germ of Z2
2 + 1 at

the origin is obviously invertible. Note that the maximal ideal m(X)x of O(X) is not
principal.
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2. Let x = (a1, . . . , an) ∈ kn ⊂ X = Ank(K). The germs of the polynomials
Zi− ai, i = 1, . . . , n, form a system of parameters at the point x. For any polynomial
F (Z1, . . . , Zn) we can write

F (Z1, . . . , Zn) = F (x) +
n∑
i=1

∂F

∂Zi
(x)(Zi − ai) +G(Z1, . . . , Zn),

where G(Z1, . . . , Zn) ∈ m2
x. Thus the cosets dZi of Zi − ai mod m2

X,x form a basis

of the linear space mX,x/m
2
X,x and the germ Fx − F (x) = F (Z1, . . . , Zn) − F (x)

mod m2
X,x is a linear combination of dZ1, . . . , dZn with the coefficients equal to the

partial derivatives evaluated at x. Let ∂
∂Zi

denote the basis of T (X)x dual to the basis

dZ1, . . . , dZn. Then the value of the tangent vector
∑

i αi
∂
∂Zi

at Fx − F (x) is equal
to

n∑
i=1

αi
∂F

∂Zi
(x).

This is also the value at F of the derivation of k[Z1, . . . , Zn] defined by the tangent
vector

∑
i αi

∂
∂Zi

.

Let f : X = An(K)→ Y = Am(K) be a regular map given by a homomorphism

k[T1, . . . , Tm]→ k[Z1, . . . , Zn], Ti → Pi(Z1, . . . , Zn).

Let ∂x =
∑

i αi
∂
∂Zi
∈ T (X)x, then

(df)x(∂x)(Ti) = ∂x(f∗(Ti)) = ∂x(Pi(Z1, . . . , Zn)) =

=

n∑
j=1

αj
∂Pi
∂Zj

(x) =

m∑
k=1

n∑
j=1

αj
∂Pi
∂Zj

(x)
∂

∂Tk
(Ti).

From this we infer that the matrix of the differential (df)x with respect to the bases
∂
∂Z1

, . . . , ∂
∂Zn

and ∂∂∂T1, . . . ,
∂

∂Tm
of T (X)x and T (Y )f(x), respectively, is equal to
∂P1
∂Z1

. . . ∂P1
∂Zn

. . . . . . . . .

. . . . . . . . .
∂Pm
∂Z1

. . . ∂Pm
∂Zn

 .

Let f : X → Y be a regular map of algebraic sets. Recall that for every x ∈ X
with y = f(x) we have a homomorphism of local rings

f∗x,y : OY,y → OX,x.
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Since f∗x(mY,y) ⊂ mX,x, we can define a homomorphism OY,y/mY,y → OX,x/mX,x

and passing to the fields of quotients we obtain an extension of fields k(x)/k(y).
Also, f∗x,y induces a linear map mY,y/m

2
Y,y → mX,x/m

2
X,x, where the target space is

considered as a vector space over the subfield k(y) of k(x), or equivalently a linear map
of k(x)-spaces

(
mY,y/m

2
Y,y

)
⊗k (y)k(x) → mX,x/m

2
X,x The transpose map defines a

linear map of the Zariski tangent spaces

df zar
x : Θ(X)x → Θ(Y )y ⊗k(y) k(x). (14.4)

It is called the (Zariski) Zariski differential of f at the point x.
Let Y be a closed subset of X and f : Y → X be the inclusion map. Let U ⊂ X be

an affine open neighborhood of a point x ∈ X and let φ1, . . . , φr be equations defining
Y in U . The natural projection O(X ∩ U) → O(Y ∩ U) = O(U ∩X)/(φ1, . . . , φr)
defines a surjective homomorphism OX,x → OY,x whose kernel is generated by the
germs ai of the functions φi. Let āi be the residue of ai modulo m2

X,x. Then f∗x,y
defines a surjective map mX,x/m

2
X,x → mY,x/m

2
Y,x whose kernel is the subspace E

spanned by ā1, . . . , ār. The differential map is the inclusion map

Θ(Y )x ∼= E⊥ = {l ∈ Θ(X)x : l(E) = {0}} → Θ(X)x. (14.5)

This shows that we can identify Θ(Y )x with a linear subspace of Θ(X)x. Let

codim(Θ(Y )x,Θ(X)x) = dim Θ(X)x − dim Θ(Y )x,

codimx(Y,X) = codimxX − codimxY,

δx(Y,X) = codimx(Y,X)− codim(Θ(Y )x,Θ(X)x). (14.6)

Then
dim Θ(Y )x − codimxY = dim Θ(X)x − codimxX + δx(Y,X).

Thus we obtain

Proposition 14.11. Let Y be a closed subset of X and x ∈ Y . Assume x is a
regular point of X, then δx(Y,X) ≥ 0 and x is a regular point of Y if and only if
δx(Y,X) = 0.

In particular, x is a regular point of Y if and only if the cosets of the germs of
the functions defining X in an neighborhood of x modulo m2

X,y span a linear subspace
of codimension equal to codimxX − codimxY . Applying Nakayama’s Lemma, we see
that this is the same as saying that X can be locally defined by codimxX − codimxY
equations in an open neighborhood of x whose germs are linearly independent modulo
m2
X,x .

For example, if Y is a hypersurface in X in a neighborhood of x, i.e. codimxY =
codimxX−1, then x is a regular point of Y if and only if Y is defined by one equation
in an open neighborhood of x whose germ does not belong to m2

X,x.
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Definition 14.4. Let Y, Z be closed subsets of an algebraic set X,x ∈ Y ∩ Z. We
say that Y and Z intersect transversally at the point x if X is nonsingular at x and

codim(Θ(Y ∩ Z)x,Θ(X)x) = codimx(Y,X) + codimx(Z,X). (14.7)

Since for any linear subspaces E1, E2 of a linear space V we have

(E1 + E2)⊥ = E⊥1 ∩ E⊥2 ,

using (14.5) we see that (14.7) is equivalent to

codim(Θ(Y )x ∩Θ(Z)x,Θ(X)x) = codimx(Y,X) + codimx(Z,X). (14.8)

Corollary 14.12. Let Y and Z be closed subsets of an algebraic set X which intersect
transversally at x ∈ X. Then

(i) the linear subspaces Θ(Y )x,Θ(Z)x intersect transversally in Θ(X)x, i.e.,

codim(Θ(Y )x∩Θ(Z)x,Θ(X)x) = codim(Θ(Y )x,Θ(X)x)+codim(Θ(Y )x,Θ(X)x);

(ii) x is a regular point of Y ∩ Z;

(iii) Y and Z are nonsingular at x.

Proof. We have

δx(Y,X) = codimx(Y,X)− codim(Θ(Y )x,Θ(X)x) ≥ 0,

δx(Z,X) = codimx(Z,X)− codim(Θ(Z)x,Θ(X)x) ≥ 0.

Since Y and Z intersect transversally at x, we obtain from (14.8)

codimx(Y,X) + codimx(Z,X) = codim(Θ(Y )x ∩Θ(Z)x,Θ(X)x) ≤

codim(Θ(Y )x,Θ(X)x) + codim(Θ(Z)x,Θ(X)x) ≤ codimx(Y,X) + codimx(Z,X).
(14.9)

This shows that all the inequalities must be equalities. This gives

codim(Θ(Y )x ∩Θ(Z)x,Θ(X)x) = codim(Θ(Y )x,Θ(X)x) + codim(Θ(Z)x,Θ(X)x)

proving (i), and δx(Y,X) = δx(Z,X) = 0 proving (iii). By Theorem 11.21 of Lecture
11, we have dimx(Y ∩ Z) ≥ dimxX − dimx(Y ) − dimx(Z). Applying Proposition
14.2, we get codimx(Y ∩Z) ≥ codimxY + codimxZ. Together with inequality (14.9)
we obtain δx(Y ∩ Z,X) = 0 proving assertion (ii).
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Next we will show that every function from OX,x can be expanded into a formal
power series in a set of local parameters at x.

Recall that the k-algebra of formal power series in n variables k[[Z]] = k[[Z1, . . . , Zn]]
consists of all formal (infinite) expressions

P =
∑

r

arZ
r,

where r = (r1, . . . , rn) ∈ Nn, ar ∈ k, Zr = Zr11 . . . Zrnn . The rules of addition and
multiplication are defined naturally (as for polynomials). Equivalently, k[[Z]] is the set
of functions P : Nn → k, r→ ar, with the usual addition operation and the operation
of multiplication defined by the convolution of functions:

(P ∗Q)(r) =
∑

i+j=r

P (i)Q(j).

The polynomial k-algebra k[Z1, . . . , Zn] can be considered as a subalgebra of
k[[Z1, . . . , Zn]]. It consists of functions with finite support. Clearly every formal
power series P ∈ k[[Z]] can be written as a formal sum P =

∑
j Pj , where Pj ∈

k[Z1, . . . , Zn]j is a homogeneous polynomial of degree j.

We set

P[r] = P0 + P1 + . . .+ Pr.

This is called the r-truncation of P .

Theorem 14.13. (Taylor expansion). Let x be a regular point of an algebraic set X of
dimension n, and {f1, . . . , fn} be a regular system of parameters at x. There exists a
unique injective homomorphism φ : OX,x ↪→ k[[Z1, . . . , Zn]] such that for every i ≥ 0

f − φ(f)[i](f1, . . . , fn) ∈ mi+1
X,x.

Proof. Take any f ∈ OX,x and denote by f(x) the image of f in k = OX,x/mX,x.
Then f − f(x) ∈ mX,x. Since the local parameters f1, . . . , fn generate mX,x, we can
find elements g1, . . . , gn ∈ OX,x such that

f = f(x) + g1f1 + . . .+ gnfn.

Replacing f by gi, we can write similar expressions for the g′is. Plugging them into
the above expression for f , we obtain

f = f(x) +
∑
i

gi(x)fi +
∑
ij

hijfifj ,
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where hij ∈ OX,x. Continuing in this way, we will find a formal power series P =∑
j Pj such that

(∗) f − P[r](f1, . . . , fn) ∈ mr+1
X,x for any r ≥ 0.

Let us show that f 7→ P defines an injective homomorphism OX,x → k[[Z]] satisfying
the assertion of the theorem. First of all, we have to verify that this map is well
defined, i.e. property (∗) determines P uniquely. Suppose there exists another formal
power series Q(Z) =

∑
j Qj such that

f −Q[r](f1, . . . , fn) ∈ mr+1
X,x for any r ≥ 0.

Let r = min{j : Qj 6= Pj} and F = Qj − Pj ∈ k[Z1, . . . , Zn]r \ {0}. Taking into
account (∗), we obtain that F (f1, . . . , fn) ∈ mr+1

X,x . Making an invertible change of
variables, we may assume that F (0, . . . , 0, 1) 6= 0, i.e.,

F (f1, . . . , fn) = G0f
r
n +G1(f1, . . . , fn−1)f r−1

n + . . .+Gr(f1, . . . , fn−1)

where Gi(Z1, . . . , Zn−1) ∈ k[Z1, . . . , Zn−1]i, G0 6= 0. Since f1, . . . , fn generate mX,x,
we can write

F (f1, . . . , fn) = H1(f1, . . . , fn)f rn+H2(f1, . . . , fn−1)f r−1
n +. . .+Hr+1(f1, . . . , fn−1),

where Hi ∈ k[Z1, . . . , Zn−1]i. After subtracting the two expressions, we get

(G0 −H1(f1, . . . , fn))f rn ∈ (f1, . . . , fn−1).

SinceH1(f1, . . . , fn) ∈ mX,x, G0−H1(f1, . . . , fn) is invertible and f rn ∈ (f1, . . . , fn−1).
Passing to the germs, we find that mX,x = (f1, . . . , fn) ⊂ rad(f1, . . . , fn−1), and
hence (f1, . . . , fn) = (f1, . . . , fn−1) because mX,x is a maximal ideal. But then, by
Krull’s Hauptidealsatz, dimx ≥ 1, a contradiction.

We leave to the reader to verify that the constructed map φ : OX,x → k[[Z]] is a
ring homomorphism. Let us check now that it is injective. It follows from the definition
of this map that φ(f) = 0 implies f ∈ (mX,x)r for all r ≥ 0. Let I = ∩rmr

X,x. By
the following Artin-Rees Lemma mX,xI = I, hence, applying Nakayama’s lemma we
obtain I = 0.

Lemma 14.14. (Artin-Rees). Let A be noetherian commutative ring and m be an
ideal in A. For any finitely generated A-module M and its submodule N , there exists
an integer n0 such that

m(mn ∩N) = (mn+1M) ∩N, n ≥ n0.
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We omit the proof which can be found in any text-book in commutative algebra.

Definition 14.5. Let φ : OX,x → k[[Z1, . . . , Zn]] be the injective homomorphism
constructed in Theorem 14.1. The image φ(f) of an element f ∈ OX,x is called the
Taylor expansion of f at x with respect to the local parameters f1, . . . , fn.

Corollary 14.15. The local ring OX,x of a regular point does not have zero divisors.

Proof. OX,x is isomorphic to a subring of the ring k[[Z]] which, as is easy to see, does
not have zero divisors .

Corollary 14.16. A regular point of an algebraic set X is contained in a unique
irreducible component of X.

Proof. This immediately follows from Corollary 14.3. Indeed, assume x ∈ Y1 ∩ Y2

where Y1 and Y2 are irreducible components of X containing the point x. Replacing
X by an open affine neighborhood, we may find a regular function f1 vanishing on Y1

but not vanishing on the whole Y2. Similarly, we can find a function f2 vanishing on
X \ Y1 and not vanishing on the whole Y1. The product f = f1f2 vanishes on the
whole X. Thus the germs of f1 and f2 are the zero divisors in OX,x. This contradicts
the previous corollary.

Remark 14.17. Note the analogy with the usual Taylor expansion which we learn
in Calculus. The local parameters are analogous to the differences ∆xi = xi − ai.
The condition f − [P ]r(f1, . . . , fn) ∈ mr+1

X,x is the analog of the convergence: the
difference between the function and its truncated Taylor expansion vanishes at the
point x = (a1, . . . , an) with larger and larger order. The previous theorem shows that
a regular function on a nonsingular algebraic set is like an analytic function: its Taylor
expansion converges to the function.

For every commutative ring A and its proper ideal I, one can define the I-adic
formal completion of A as follows. Let pn,k : A/In+1 → A/Ik+1 be the canonical
homomorphism of factor rings (n ≥ k). Set

ÂI = {(. . . , ak, . . . , an . . .) ∈
∏
r≥0

(A/Ir+1) : pn,k(an) = ak for all n ≥ k}.

It is easy to see that ÂI is a commutative ring with respect to the addition and
multiplication defined coordinate-wise. We have a canonical homomorphism:

i : A→ ÂI , a 7→ (a0, a1, . . . , an, . . .)

where an = residue of a modulo In+1. Note the analogy with the ring of p-adic
numbers which is nothing else as the formal completion of the local ring Z(p) of
rational numbers a

b , p - b.
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The formal I-adic completion Â is a completion in the sense of topology. One
makes A a topological ring (i.e. a topological space for which addition and multi-
plication are continuous maps) by taking for a basis of topology the cosets a + In.
This topology is called the I-adic topology in A. One defines a Cauchy sequence as
a sequence of elements an in A such that for any N ≥ 0 there exists n0(N) such
that an − am ∈ IN for all n,m ≥ n0(N). Two Cauchy sequences {an} and {bn}
are called equivalent if limn→∞(an − bn) = 0, that is, for any N > 0 there exists
n0(N) such that an − bn ∈ IN for all n ≥ 0. An equivalence class of a Cauchy
sequence {an} defines an element of Â as follows. For every N ≥ 0 let αN be the
image of an in A/IN+1 for n ≥ n0(N). Obviously, the image of αN+1 in A/IN+1

is equal to αN . Thus (α0, α1, . . . , αN , . . .) is an element from Â. Conversely, any
element (α0, α1, . . . , αn, . . .) in Â defines an equivalence class of a Cauchy sequence,
namely the equivalence class of {an}. Thus we see that Â is the usual completion of
A equipped with the I-adic topology.

If A is a local ring with maximal ideal m, then Â denotes the formal completion
of A with respect to the m-adic topology. Note that this topology is Hausdorff. To
see this we have to show that for any a, b ∈ A, a 6= b, there exists n > 0 such that
a+mn∩b+mn = ∅. this is equivalent to the existence of n > 0 such that a−b 6∈ mn.
This will follow if we show that ∩n≥0m

n = {0}. But this follows immediately from
Nakayama’s Lemma as we saw in the proof of Theorem 14.13. Since the topology is
Hausdorff, the canonical map from the space to its completion is injective. Thus we
get

A ↪→ Â.

Note that the ring Â is local. Its unique maximal ideal m̂ is equal to the closure
of m in Â. It consists of elements (0, a1, . . . , an, . . .). The quotient Â/m̂ is iso-

morphic to A/m = κ. The canonical homomorphism (̂A) → Â/m̂ is of course
(a0, a1, . . . , an, . . .)→ a0.

The local ring Â is complete with respect to its m̂-topology. A fundamental result
in commutative algebra is the Cohen Structure Theorem which says that any complete
Noetherian local ring (A,m) which contains a field is isomorphic to the quotient ring
κ[[T1, . . . , Tn]], where κ is the residue field and n = dimκm/m

2. This of course applies
to our situation when A = ÔX,x, where x is not necessary a rational point of X. In
particular, when x is a regular point, we obtain

ÔX,x ∼= k(x)[[T1, . . . , Tn]] (14.10)

which generalizes our Theorem 14.1.

Let us use the isomorphism (14.10) to show that a nonsingular point is regular if
assume that the extension k(x)/k is separable (i.e. can be obtained as a separable
finite extension of a purely transcendental extension of k). We only sketch a proof.
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We have a canonical linear map α : Derk(ÔX,x,K) → Derk(OX,x,K) corresponding
to the inclusion map of the ring into its completion. Note that for any local ring (A,m)
which contains k, the canonical homomorphism of A-modules

ρA : Derk(A,K)→ Homk(m/m
2,K)

is injective. In fact, if M is its kernel, then, for any δ ∈ M we have δ(m) = 0. This
implies that for any a ∈ m and any x ∈ A, we have 0 = δ(ax) = aδ(x) + xδ(a) =
aδ(x). Thus aδ = 0. This shows that mM = 0, and by Nakayama’s lemma we get
M = 0. Composing α with ρOX,x

we obviously get ρÔX,x
. Since the latter is injective,

α is injective. Now we show that it is surjective. Let δ ∈ Derk(OX,x,K). Since its
restriction to m2

X,x is zero, we can define δ(a + m2
X,x) for any a ∈ OX,x. For any

x = (x0, x1, . . .) ∈ ÔX,x we set δ̃(x) = δ(x1). It is easy to see that this defines a

derivation of ÔX,x/m̂2 such that ρ(δ̃) = δ.
So, we obtain an isomorphism of K-vector spaces:

Derk(ÔX,x,K) ∼= Derk(OX,x,K).

By Cohen’s Theorem, ÔX,x ∼= k(x)[[T1, . . . , Tn]], where the pre-image of the field of

constant formal series is a subfield L of ÔX,x isomorphic to k(x) under the projection
to the residue field. It is clear that the pre-image of the maximal ideal (T1, . . . , Tn)
is the maximal ideal of OX,x. Let DerL(ÔX,x,K) be the subspace of Derk(ÔX,x,K)
of derivation trivial on L. Using the same proof as in Lemma 13.3 of Lecture 13, we
show that DerL(ÔX,x,K) ∼= Θ(X)x. Now we have an exact sequence, obtained by
restrictions of derivations to the subfield L:

0→ DerL(ÔX,x,K)→ Derk(ÔX,x,K)→ Derk(L,K). (14.11)

It is easy to see that dimK Derk(L,K) = algdimkL = algdimkk(x). In fact,

Derk(k(t1, . . . , tr),K) ∼= Kr

(each derivation is determined by its value on each ti). Also each derivation can be
uniquely extended to a separable extension. Thus exact sequence (14.11) gives

dimK Derk(ÔX,x,K) = dimK Derk(ÔX,x,K) ≤ embdimxX + algdimkk(x).

This implies that embdimx(X) = dimOX,x and hence OX,x is regular.
Let (X,x) be a pair that consists of an algebraic set X and its point x ∈ X.

Two such pairs are called locally isomorphic if the local rings OX,x and OY,y are
isomorphic. They are called formally isomorphic if the completions of the local rings
are isomorphic. Thus any pair (X,x) where x is a nonsingular point of X is isomorphic
to a pair (An(K), 0) where n = dimxX. Compare this with the definition of a smooth
(or complex manifold).
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Theorem 14.18. A regular local ring is a UFD (= factorial ring).

The proof of this non-trivial result can be found in Zariski-Samuel’s Commutative
Agebra, vol. II. See the sketch of this proof in Shafarevich’s book, Chapter II, §3. It
uses an embedding of a regular ring into the ring of formal power series.

Corollary 14.19. Let X be an algebraic set, x ∈ X be its regular point, and Y be a
closed subset of codimension 1 which contains x. Then there exists an open subset U
containing x such that Y ∩ U = V (f) for some regular function on U .

Proof. Let V be an open affine open neighborhood of x, g ∈ I(Y ∩V ), and let gx be
the germ of g at x and fx be a prime factor of gx which has a representative f ∈ O(U)
vanishing on Y ∩ U for some smaller affine neighborhood U of x. At this point we
may assume that X = U . Since V (f) ⊃ Y and dimV (f) = dimY, Y is equal to
some irreducible component of V (f), i.e., V (f) = Y ∪ Z for some closed subset of
U . If x ∈ Z, then there exist regular functions h and h′ on X such that hh′ ≡ 0 on
V (f) but h 6≡ 0 on Y and h′ 6≡ 0 on Z. By Hilbert’s Nullstellensatz, (hh′)r ∈ (f).
Passing to the germs, we obtain that fx|(hxh′x)r. Since OX,x is factorial, we obtain
that fx|hx or fx|h′x. Therefore for some open neighborhood U ′ ⊂ U , either h|U ′
or h′|U ′ vanishes identically on (Y ∪ Z) ∩ U ′. This contradicts the choice of h and
h′. This shows that x 6∈ Z, and replacing U by a smaller open subset, the proof is
complete.

Here is the promised application.
Recall that a rational map f : X−→ Y from an irreducible algebraic set X to an

algebraic set Y is a regular map of an open subset of X. Two rational maps are said
to be equal if they coincide on an open subset of X. Replacing X and Y by open
affine subsets, we find ourselves in the affine situation of Lecture 4. We say that a
rational map f : X−→ Y is defined at a point x ∈ X if it can be represented by a
regular map defined on an open subset containing the point x. A point x where f is
not defined is called a indeterminacy point of f .

Theorem 14.20. Let f : X−→ Y be a rational map of a nonsingular algebraic set
X to a projective set Y . Then the set of indeterminacy points of f is a closed subset
of X each irreducible component of which is of codimension ≥ 2.

Proof. Since Y ⊂ Pn(K) for some n, we may assume that Y = Pn(K). Let U be
the maximal open subset where f is represented by a regular map f : U → Pn(K),
and Z = X \ U . Assume Z contains an irreducible component of codimension 1. By
Corollary 14.15, for any x ∈ Z there exists an open neighborhood V of x such that
Z∩V = V (φ) for some regular function φ on V . Restricting f to some smaller subset
of D(φ) = V \ V (φ) we may assume that f |D(φ) is given by n+ 1 regular functions
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φ1, . . . , φn+1 on D(φ). Since OX,x is factorial, we may cancel the germs (φi)x by
their common divisor to assume that not all of them are divisible by the germ φx of
φ. The resulting functions define the same map to Pn(K). It is not defined at the
set of common zeroes of the functions φi. Its intersection with Z cannot contain any
open neighborhood of x, hence is a proper closed subset of Z. This shows that we
can extend f to a larger open subset contradicting the maximality of U .

Corollary 14.21. Any rational map of a nonsingular curve to a projective set is a
regular map. In particular, two nonsingular projective curves are birationally isomorphic
if and only if they are isomorphic.

This corollary is of fundamental importance. Together with a theorem on resolution
of singularities of a projective curve it implies that the set of isomorphism classes of
field extensions of k of transcendence degree 1 is in a bijective correspondence with
the set of isomorphism classes of nonsingular projective algebraic curves over k.

Problems.

1. Using Nakayama’s Lemma prove that a finitely generated projective module over a
local ring is free.

2. Problem 6 from Shafarevich, Chap. II, §3.

3. Let A be a ring with a decreasing sequence of ideals A = I0 ⊃ I1 ⊃ · · · ⊃ In ⊃ · · ·
such that Ii · Ij ⊂ Ii+j for all i, j. Let GrF (A) = ⊕∞i=0Ii/Ii+1 with the obvious ring
structure making GrF (A) a graded ring. Show that a local ring (A,m) of dimension
n is regular if and only GrF (A) ∼= κ[T1, . . . , Tn], where Ii = mi.

4. Let X = V (F ) ⊂ A2(K) where F = Z3
1 − Z2(Z2 + 1). Find the Taylor expansion

at (0, 0) of the function Z2 mod (F ) with respect to the local parameter Z1 mod (F ).

5. Give an example of a singular point x ∈ X such that there exists an injective
homomorphism OX,x → k[[Z1]]. Give an example of a curve X and a point x ∈ X
for which such homomorphism does not exist.

6. Let X = V (Z1Z2 + Z2
3 ) ⊂ K4. Show that the line V (Z1, Z3) ⊂ X cannot be

defined by one equation in any neighborhood of the origin.

7. Show that Theorem 15.10 is not true for singular projective algebraic curves.

8*. Let X = V (Z1Z2 + F (Z1, Z2)) ⊂ A2(K) where F is a homogeneous polynomial
of degree ≥ 3. Show that ÔX,x ∼= K[[T1, T2]]/(T1T2) and hence the singularity (X, 0)
and (V (Z1Z2), 0) are formally isomorphic.
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Lecture 15

Projective embeddings

Lecture we shall address the following question: Given a projective algebraic k-set X,
what is the minimal N such that X is isomorphic to a closed subset of PNk (K)? We
shall prove that N ≤ 2 dimX + 1. For simplicity we shall assume here that k = K.
Thus all points are rational, the kernel of the evaluation maps is a maximal ideal, the
tangent space is equal to the Zariski tangent space, a regular point is the same as a
nonsingular point.

Definition 15.1. A regular map of projective algebraic sets f : X → Pr(K) is called
an embedding if it is equal to the composition of an isomorphism f ′ : X → Y and the
identity map i : Y → Pr(K), where Y is a closed subset of Pr(K).

Theorem 15.1. A finite regular map f : X → Y of algebraic sets is an isomorphism
if and only if it is bijective and for every point x ∈ X the differential map (df)x :
T (X)x → T (Y )f(x) is injective.

Proof. To show that f is an isomorphism it suffices to find an open affine covering
of Y such that for any open affine subset V from this covering the homomorphism of
rings f∗ : O(V ) → O(f−1(V )) is an isomorphism. The inverse map will be defined
by the maps of affine sets V → f−1(V ) corresponding to the inverse homomorphisms
(f∗)−1 : O(f−1(V )) → O(V ). So we may assume that X and Y are affine and also
irreducible.

Let x ∈ X and y = f(x). Since f is bijective, f−1(y) = {x}. The homomorphism
f∗ induces the homomorphism of local rings f∗y : OY,x → OX,x. Let us show that it
makes OX,x a finite OY,x-module. Let m ⊂ O(Y ) be the maximal ideal corresponding
to the point y and let S = O(Y ) \ m. We know that OY,x = O(Y )S , and, since
finiteness is preserved under localizations, O(X)f∗(S) is a finite OY,x-module. I claim
that O(X)f∗(S) = OX,x. Any element in OX,x is represented by a fraction α/β ∈
Q(O(X)) where β(x) 6= 0. Since the map f is finite and bijective it induces a

147
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bijection from the set (V (β)) of zeroes of β to the closed subset f(V (β)) of Y . Since
y 6∈ f(V (β)) we can find a function g ∈ S vanishing on f(V (β)). By Nullstellensatz,
f∗(g)r = βγ for some r > 0 and some γ ∈ O(X). Therefore we can rewrite the
fraction α/β in the form αγ/f∗(g)r showing that it comes from O(X)f∗(S). This
proves the claim.

By assumption f∗y : OY,x → OX,x induces a linear surjective map:

t(df)x : mY,y/m
2
Y,y → mX,x/m

2
X,x

where ”t” stands for the transpose map of the dual vector spaces. Let h1, . . . , hk be a
set of local parameters of Y at the point y. Their images f∗y (h1), . . . , f∗y (hk) in mX,x

span mX,x/m
2
X,x. As follows from Lecture 14, this implies that f∗y (h1), . . . , f∗y (hk)

generate mX,x. Therefore,

f∗y (mY,y)OX,x = mX,x.

Since f∗y (OY,y) contains constant functions, and OX,x = k + mX,x, we get

OX,x = f∗y (OY,y) + mY,yOX,x.

Having proved thatOX,x is a finitely generatedOY,y-module we may apply Nakayama’s
lemma to obtain that

OX,x = f∗y (OY,y).

Therefore the map f∗y : OY,y → OX,x is surjective. It is obviously injective. Let
φ1, . . . , φm be generators of the O(Y )-module O(X). The germs (φi)x belong to
OX,x = f∗(OY,x) allowing us to write (φi)x = f∗((ψi)y), where ψi are regular func-
tions on some affine open neighborhood V of f(x). This shows that the germs of φi
and f∗(ψi) at the point x are equal. Hence, after replacing V by a smaller set V ′ if
needed, we can assume that φi = f∗(ψi) for some open subset U of f−1(V ). Since
X is irreducible we can further assume that U = f−1(V ). If we replace again V by
a principal open subset D(h) ⊂ Y , we get U = D(f∗(h)),O(V ) = O(Y )h,O(U) =
O(X)f∗(h), and the functions φi|U generate O(U) as a module over O(V ). This im-
plies that f∗ : O(V ) → O(f−1(V )) is surjective, hence an isomorphism. This proves
the assertion.

Remark 15.2. The assumption of finiteness is essential. To see this let us take X to be
the union of two disjoint copies of affine line with the origin in the second copy deleted,
and let Y = V (Z1Z2) be the union of two coordinate lines in A2(K). We map the
first copy isomorphically onto the lines Z1 = 0 and map the second component of X
isomorphically onto the line Z2 = 0 with the origin deleted. It is easy to see that all
the assumptions of Theorem 15.1 are satisfied except the finiteness. Obviously, the
map is not an isomorphism.
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Definition 15.2. We say that a line ` in Pn(K) is tangent to an algebraic set X at a
point x ∈ X if T (`)x is contained in T (X)x (both are considered as linear subspaces
of T (Pn(K))x).

Let E be a linear subspace in Pn(K) defined by a linear subspace Ē of Kn+1. For
any point x = (a0, . . . , an) ∈ E defined by the line Lx = K(a0, . . . , an) in Ē, the tan-
gent space T (E)x can be identified with the factor space HomK(Lx, Ē/K(a0, . . . , an)
(see Example 13.2 of Lecture 13). The inclusion Ē ⊂ Kn+1 identifies it naturally with
the subspace of T (Pn(K))x = HomK(Lx,K

n+1/Lx). Now let X be a projective sub-
set of Pn(K) defined by a system of homogeneous equations F1(T0, . . . , Tn) = . . . =
Fm(T0, . . . , Tn) = 0 and let x ∈ X. Then the tangent space T (X)x can be identified
with the subspace of T (Pn(K))x defined by the equations

n∑
j=0

∂Fi
∂Tj

(x)bj = 0, i = 1, . . .m. (15.1)

Now we see that a line E is tangent to X at the point x if and only if Ē is contained in
the space of solutions of (15.1) In particular we obtain that the union of lines tangent
to X at the point x is the linear subspace of Pn(K) defined by the system of linear
homogeneous equations

n∑
j=0

∂Fi
∂Tj

(x)Tj = 0, i = 1, . . .m. (15.2)

It is called the embedded tangent space and is denoted by ET(X)x.

Lemma 15.3. Let X be a projective algebraic set in Pn(K), a ∈ Pn(K) ⊂ X, the
linear projection map pa : X → Pn−1(K) is an embedding if and only if every line `
in Pn(K) passing through the point a intersects X in at most one point and is not
tangent to X at any point.

Proof. The induced map of projective sets f : X → Y = pa(X) is finite and bijective.
By Theorem 15.1, it suffices to show that the tangent map (df)x is injective. Without
loss of generality we may assume that a = (0, . . . , 0, 1) and the map pa is given by
restriction to X of the projection p : Pn(K)\{a} → Pn−1(K) is given by the formula:

(T0, . . . , Tn)→ (T0, . . . , Tn−1).

For any point x = (x0, . . . , xn) 6= a, we can identify the tangent space T (Pn(K))x with
the quotient space Kn+1/K(x1, . . . , xn), the tangent space T (Pn−1(K))pa(x) with
Kn/K(x1, . . . , xn−1), and the differential (dpa)x with the map Kn+1/K(x1, . . . , xn)→
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Kn/K(x1, . . . , xn−1) induced by the projection Kn+1 → Kn. It is clear that its ker-
nel is spanned by Kx + K(0, . . . , 0, 1)/Kx. But this is exactly the tangent space of
the line ` spanned by the points x = (x0, . . . , xn) and a = (0, . . . , 0, 1). Thus the
differential of the restriction of pa to X is injective if and only if the tangent space of
the line ` is not contained in the tangent space T (X)x. This proves the assertion.

Lemma 15.4. Let X be a quasi-projective algebraic subset of Pn(K) and x ∈ X be
its nonsingular point. Then ET(X)x is a projective subspace in Pn(K) of dimension
equal to d = dimxX.

Proof. We know that ET(X)x is the subspace of Pn(K) defined by equation(15.2). So
it remains only to compute the dimension of this subspace. Since x is a nonsingular
point of X, the dimension of T (X)x is equal to d. Now the result follows from
comparing equations (15.1) and (15.2). The first one defines the tangent space T (X)x
and the second ET(X)x. The (linear) dimension of solutions of both is equal to

d+ 1 = n+ 1− rank(
∂Fi
∂Tj

)(x) = dimKT (X)x + 1 = dim ET(X)x + 1.

Note that the previous lemma shows that one can check whether a point of a
projective set X is nonsingular by looking at the Jacobian matrix of homogeneous
equations defining X.

Let

Z = {(x, y, z) ∈ Pn(K)× Pn(K)× Pn(K) : x, y, z ∈ ` for some line `}.

This is a closed subset of Pn(K)×Pn(K)×Pn(K) defined by the equations expressing
the condition that three lines x = (x0, . . . , xn), y = (y0, . . . , yn), z = (z0, . . . , zn) are
linearly dependent. The tri-homogeneous polynomials defining Z are the 3× 3-minors
of the matrix T0 . . . Tn

T ′0 . . . T ′n
T ′′0 . . . T ′′n

 .

Let p12 : Z → Pn(K)× Pn(K) be the projection map to the product of the first two
factors. For any (x, y) ∈ Pn(K)× Pn(K)

p3(p−1
12 ((x, y))) =

{
< x, y > if x 6= y,

Pn(K) if x = y
,

where < x, y > denotes the line spanned by the points x, y.
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Let X be a closed subset of Pn(K). We set

SechX = p−1
12 (X ×X \∆X),

SecX = closure of SechX in Z.

The projection p12 and the projection p3 : Z → Pn(K) to the third factor define the
regular maps

p : SecX → X ×X, q : SecX → Pn(K).

For any (x, y) ∈ X × X \ ∆X the image of the fibre p−1(x, y) under the map q is
equal to the line < x, y >. Any such lines is called a secant of X. The union of all
honest secants of X is equal to the image of SechX under the map q. The closure of
this union is equal to q(secX). It is denoted by Sec(X) and is called the secant variety
of X.

Lemma 15.5. Let X be an irreducible closed subset of Pn(K). The secant variety
Sec(X) is an irreducible projective algebraic set of dimension ≤ 2 dimX + 1.

Proof. It is enough to show that sechX is irreducible. This would imply that secX and
Sec(X) are irreducible, and by the theorem on dimension of fibres

dim SechX = dim(X ×X) + 1 = 2 dimX + 1.

This gives

dim Sec(X) ≤ dim Sec(X) = dim sechX = 2 dimX + 1.

To prove the irreducibility of sechX we modify a little the proof of Lemma 12.7 of
Lecture 12. We cannot apply it directly since sechX is not projective set. However,
the map ph : sechX → X ×X \∆X is the restriction of the projection sets (X ×X \
∆X) × Pn(K) → X ×X \∆X . By Chevalley’s Theorem from Lecture 9, the image
of a closed subset of sechX is closed in X ×X \∆X . Only this additional property of
the map f : X → Y was used in the proof of Lemma 12.7 of Lecture 12.

Lemma 15.6. The tangential variety Tan(X) of an irreducible projective algebraic set
of Pn(K) is an irreducible projective set of dimension ≤ 2 dimX.

Proof. Let Z ⊂ X ⊂ Pn(K) ⊂ Pn(K) × Pn(K) be a closed subset defined by
equations (1), where x is considered as a variable point in X. Consider the projection
of Z to the first factor. Its fibres are the embedded tangent spaces. Since X is
nonsingular, all fibres are of dimension dimX. As in the case of the secant variety
we conclude that Z is irreducible and its dimension is equal to 2 dimX. Now the
projection of Z to Pn is a closed subset of dimension ≤ 2 dimX. It is equal to the
tangential variety Tan(X).
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Now everything is ready to prove the following main result of this Lecture:

Theorem 15.7. Every nonsingular projective d-dimensional algebraic set X can be
embedded into P2d+1.

Proof. The idea is very simple. Let X ⊂ Pn(K), we shall try to project X into a
lower-dimensional projective space. Assume n > 2d + 1. Let a ∈ Pn(K) \ X. By
Lemma 15.3, the projection map

pa : X → Y ⊂ Pn−1(K)

is an isomorphism unless either x lies on a honest secant of X or in the tangential
variety of X. Since all honest secants are contained in the secant variety Sec(X) of
X, and

dim Sec(X) ≤ 2 dimX + 1 < n, dim Tan(X) ≤ 2 dimX < n,

we can always find a point a 6∈ X for which the map pa is an isomorphism. Continuing
in this way, we prove the theorem.

Corollary 15.8. Every projective algebraic curve (resp. surface) is isomorphic to a
curve (resp. a surface) in P3(K) (resp. P5(K)).

Remark 15.9. The result stated in the Theorem is the best possible for projective
sets. For example, the affine algebraic curve: V (T 2

1 + Fn(T2)) = 0, where Fn is a
polynomial of degree n > 4 without multiple roots, is not birationally isomorphic to
any nonsingular plane projective algebraic curve. Unfortunately, we have no sufficient
tools to prove this claim. Let me give one more unproven fact. To each nonsingular
projective curve X one may attach an integer g ≥ 0, called the genus of X. If K = C
is the field of complex numbers, the genus is equal to the genus of the Riemann surface
associated to X. Each compact Riemann surface is obtained in this way. Now for any
plane curve V (F ) ⊂ P2(K) of degree n one computes the genus by the formula

g =
(n− 1)(n− 2)

2
.

Since some values of g cannot be realized by this formula (for example g = 2, 4, 5) we
obtain that not every nonsingular projective algebraic curve is isomorphic to a plane
curve.

Let Sec(X) be the secant variety of X. We know that it is equal to the closure of
the union Sec(X)h of honest secant lines of X. A natural guess is that the comple-
mentary set Sec(X) \Sec(X)h consists of the union of tangent lines to X, or in other
words to the tangential variety Tan(X) of X. This is true.
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Theorem 15.10. Let X ⊂ Pn(K) be a nonsingular irreducible closed subset of Pn(K).
Then

Sec(X) = Sec(X)h ∪ Tan(X).

Proof. Since Sec(X) is equal to the closure of an irreducible variety Sec(X)h and
Tan(X) is closed, it is enough to prove that Sec(X)h ∪ Tan(X) is a closed set.

Let Z ne the closed subset of X ×Pn(K) considered in the proof of Lemma 15.6.
Its image under the projection to X is X, and its fibre over a point x is isomorphic
to the embedded tangent space ET(X)x. Its image under the projection to Pn is the
variety Tan(X). We can view any point (x, y) = ((x0, . . . , xn), (y0, . . . , yn)) ∈ ET(X)
as a pair x+ yε ∈ K[ε]n+1 satisfying the equations Fi(T ) = 0. Note that for X = Pn
we have ET(X) = Pn×Pn. Consider a closed subset Z of ET(X)×ET (X)×ETPn(K)
defined by the equations

rank[x+ εy, x′ + εy′, x′′ + εy′′] < 3, (15.3)

where the matrix is of size 3×(n+1) with entries in K[ε]. The equations are of course
the 3 × 3-minors of the matrix. By Chevalley’s Theorem, the projection Z ′ of Z to
ET(X)×ET(X) is closed. Applying again this theorem, we obtain that the projection
of Z ′ to Pn is closed. Let us show that it is equal to Sech(X) ∪ Tan(X).

It is clear that the image (x, x′, x′′) of z = (x+εy, x′+εy′, x′′+εy′) in X×X×X
satisfies rank[x, x′, x′′] < 3. This condition is equivalent to the following. For any
subset I of three elements from the set {0, . . . , n} let |xI + εyI , x

′
I + εy′I , x

′′
I + εy′′I |

be the corresponding minor. Then equation (15.3) is equivalent to the equations

|xI + εyI , x
′
I + εy′I , x

′′
I + εy′′I | = 0.

Or, equivalently,

|xI , x′I , x′′I | = 0, (15.4)

|xI , y′I , x′′I |+ |xI , x′I , y′′I |+ |yI , x′I , x′′I | = 0. (15.5)

Suppose equations (15.4) and (15.5) are satisfied. Then (15.4)) means that the point
x′′ ∈ Pn lies in the line spanned by the points x, x′ or rank[x, x′] = 1. In the first case
we obtain that x′′ ∈ Sech(X). Assume x = x′ as points in Pn. Then (15.5) gives
|xI , x′′I , y′I − yI | = 0. Since (x, y) and (x, y′) lie in ET(X)x, we obtain that x′′ lies
on the line spanned by a point x and a point in ET(X)x. Hence x′′ ∈ ET(X)x. This
proves the assertion.

Remark 15.11. If X is singular, the right analog of the embedded tangent space ET(X)
is the tangent cone CT (X)x. It is defined as the union of limits of the lines < x, y >
where y ∈ X. See details in Shafarevich’s book, Chapter II, §1, section 5.
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Definition 15.3. A closed subset X ⊂ Pn(K) is called non-degenerate if it is not
contained in a hyperplane in Pn(K). A nondegenerate subset is called linearly normal
if it cannot be obtained as an isomorphic projection of some X ′ ⊂ Pn+1(K).

Theorem 15.12. Let X be a nonsingular irreducible nondegenerate projective curve in
P3(K). Then X cannot be isomorphically projected into P2(K) from a point outside
X. In particular any plane nonsingular projective curve of degree > 1 is linearly normal.

Proof. Applying Theorem 15.10 and Lemma 15.3, we have to show that Sec(X) =
P3(K). Assume the contrary. Then Sec(X) is an irreducible surface. For any x ∈
X,Sec(X) contains the union of lines joining x with some point y 6= x in X. Since X
is not a line, the union of lines < x, y >, y ∈ Y, y 6= x, is of dimension > 1 hence equal
to Sec(X). Pick up three non-collinear points x, y, z ∈ X. Then Sec(X) contains the
line < x, y >. Since each point of Sec(X) is on the line passing through z, we obtain
that each line < z, t >, t ∈< x, y > belongs to Sec(X). But the union of these lines
is the plane spanned by x, y, z. Thus Sec(X) coincides with this plane. Since X is
obviously contained in Sec(X) this is absurd.

The next two important results of F. Zak are given without proof.

Theorem 15.13. Let X be a nonsingular nondegenerate closed irreducible subset of
Pn(K) of dimension d. Assume Sec(X) 6= Pn(K). Then

n ≥ 2 +
3d

2
.

In particular, any nonsingular nondegenerate d-dimensional closed subset of Pn(K) is
linearly normal if n ≤ 3d

2 .

If d = 2, this gives that any surface of degree > 1 in P3(K) is linearly normal.
This bound is sharp. To show this let us consider the Veronese surface X = v2(P2(K)
in P5(K). Then we know that it is isomorphic to the set of symmetric 3× 3-matrices
of rank 1 up to proportionality. It is easy to see, by using linear algebra, that Sec(X)
is equal to the set of symmetric matrices of rank ≤ 2 up to proportionality. This is
a cubic hypersurface in P3(K) defined by the equation expressing the determinant of
symmetric matrix. Thus we can isomorphically project X in P4(K).

Remark 15.14. According to a conjecture of R. Hartshorne, any non-degenerate non-
singular closed subset X ⊂ Pn(K) of dimension d > 2n/3 is a complete intersection
(i.e. can be given by n− d homogeneous equations).

Definition 15.4. A Severi variety is a nonsingular irreducible algebraic set X in Pn(K)
of dimension d = 2(n−2)/3 which is not contained in a hyperplane and with Sec(X) 6=
Pn(K).
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The following result of F. Zak classifies Severi varieties in characteristic 0:

Theorem 15.15. Assume char(K) = 0. Each Severi variety is isomorphic to one of
the following four varieties:

• (n = 2) the Veronese surface v2(P2(K)) ⊂ P5(K);

• (n = 4) the Segre variety s2,2(P2(K)× P2(K)) ⊂ P8(K);

• (n = 8) the Grassmann variety G(2, 6) ⊂ P14(K) of lines in P5(K);

• (n = 16) the E6-variety X in P2(K).

The last variety (it was initially missing in Zak’s classification and was added to
the list by R. Lazarsfeld) is defined as follows. Choose a bijection between the set of
27 lines on a nonsingular cubic surface and variables T0, . . . , T26. For each triple of
lines which span a tri-tangent plane form the corresponding monomial TiTjTk. Let F
be the sum of such 45 monomials. Its set of zeroes in P26(K) is a cubic hypersurface
Y = V (F ). It is called the Cartan cubic. Then X is equal to the set of singularities
of Y (it is the set of zeroes of 27 partial derivatives of F ) and Y equals Sec(X).
From the point of view of algebraic group theory, X = G/P , where G is a simply
connected simple algebraic linear group of exceptional type E6, and P its maximal
parabolic subgroup corresponding to the dominant weight ω defined by the extreme
vertex of one of the long arms of the Dynkin diagram of the root system of G. The
space P26(K) is the projectivization of the representation of G with highest weight ω.

We only check that all the four varieties from Theorem 15.15 are in fact Severi
varieties. Recall that the Veronese surface can be described as the space of 3 × 3
symmetric matrices of rank 1 (up to proportionality). Since a linear combination of
two rank 1 matrices is a matrix of rank ≤ 2, we obtain that the secant variety is
contained in the cubic hypersurface in P5 defining matrices of rank ≤ 2. Its equation
is the symmetric matrix determinant. It is easy to see that the determinant equation
defines an irreducible variety. Thus the dimension count gives that it coincides with
the determinant variety. Similarly, we see that the secant variety of the Segre variety
coincides with the determinant hypersurface of a general 3 × 3 matrix. The third
variety can be similarly described as the variety of skew-symmetric 6 × 6 matrices of
rank 2. Its secant variety is equal to the Pfaffian cubic hypersurface defining skew-
symmetric matrices of rank < 6. Finally, the secant variety of the E6-variety is equal
to the Cartan cubic. Since each point of the Severi variety is a singular point of the
cubic, the restriction of the cubic equation to a secant line has two multiple roots.
This easily implies that the line is contained in the cubic. To show that the secant
variety coincides with the cartan cubic is more involved, One looks at the projective
linear representation of the exceptional algebraic group G of type E6 in P26 defining
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the group G. One analyzes its orbits and shows that there are only three orbits: the
E6-variety X, the Cartan cubic with X deleted and P26 with Cartan cubic deleted.
Since the secant variety is obviously invariant under the action of G, it must coincide
with the Cartan cubic.

Note that in all four cases the secant variety is a cubic hypersurface and its set of
singular points is equal to the Severi variety. In fact, the previous argument shows that
the secant variety of the set of singular points of any cubic hypersurface is contained
in the cubic. Thus Theorem 15.15 gives a classification of cubic hypersurfaces in Pn
whose set of singular points is a smooth variety of dimension 2(n− 2)/3.

There is a beautiful uniform description of the four Severi varieties. Recall that
a composition algebra is a finite-dimensional algebra A over a field K (not necessary
commutative or associative) such that there exists a non-degenerate quadratic form
Φ : A→ K such that for any x, y ∈ A

Φ(x · y) = Φ(x)Φ(y).

According to a classical theorem of A. Hurwitz there are four isomorphism classes
of composition algebras over a field K of characteristic 0: K,Co,Ha and Oc of
dimension 1, 2, 4 and 8, respectively. Here

Co = K ⊕K, (a, b) · (a′, b′) = (aa′ − bb′, ab′ + a′b),

Ha = Co⊕ Co, (x, y) · (x′, y′) = (x · x′ − ȳ · y′, x · y′ + y · x̄′),

Oc = Ha⊕Ha, (h, g) · (h′, g′) = (h · h′ − ḡ · g′, h · g′ + g · h̄′),

where for any x = (a, b) ∈ Co we set x̄ = (a,−b), and for any h = (x, y) ∈ Ha we
set h̄ = (x̄,−y). The quadratic form Φ is given by

Φ(x) = x · x̄,

where x̄ is defined as above for A = Ca and H, x̄ = x for A = K, and x̄ = (h̄,−h′)
for any x = (h, h′) ∈ Oc.

For example, if K = R, then Co ∼= C (complex numbers), Ha ∼= H (quaternions),
Oc = O (octonions or Cayley numbers).

For every composition algebra A we can consider the set H3(A) of Hermitian
3 × 3-matrices (aij) with coefficients in A, where Hermitian means aij = āji. Its
dimension as a vector space over K equals 3 + 3r, where r = dimK A. There is
a natural definition of the rank of a matrix from H3(A). Now Theorem 15.15 says
that the four Severi varieties are closed subsets of P3r+2 defined by rank 1 matrices in
H3(A). The corresponding secant variety is defined by the homogeneous cubic form
representing the “determinant” of the matrix.
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Let us define Pn(A) for any composition algebra as An+1\{0}/A∗. Then one view
the four Severi varieties as the “Veronese surfaces” corresponding to the projective
planes over the four composition algebra.

As though it is not enough of these mysterious coincidences of the classifications,
we add one more. Using the stereographic projection one can show that

P1(R) = S1, P1(C) = S2, P1(H) = S4, P1(O) = S8,

where Sk denote the unit sphere of dimension k. The canonical projection

A2 \ {0} → P1(A) = Sk

restricted to the subset {(x, y) ∈ R2 : x · x̄+ y · ȳ = 1} = S2r−1 defines a map

π : S2r−1 → Sr

which has a structure of a smooth bundle with fibres diffeomorphic to the sphere
Sr−1 = {x ∈ A∗ : x · x̄ = 1}. In this way we obtain 4 examples of a Hopf bundle: a
smooth map of a sphere to a sphere which is a fibre bundle with fibres diffeomorphic to
a sphere. According to a famous result of F. Adams, each Hopf bundle is diffeomorphic
to one of the four examples coming from the composition algebras.

Is there any direct relationship between Hopf bundles and Severi varieties?

Problems.
1. Let X be a nonsingular closed subset of Pn(K). Show that the set J(X) of secant
or tangent lines of X is a closed subset of the Grassmann variety G(2, n + 1). Let
X = v3(P1(K)) be a twisted cubic in P3(K). Show that J(X) is isomorphic to
P2(K).
2. Find the equation of the tangential surface Tan(X) of the twisted cubic curve in
P3(K).
3. Show that each Severi variety is equal to the set of singular points of its secant
variety. Find the equations of the tangential variety Tan(X).
4. Assume that the secant variety Sec(X) is not the whole space. Show that any X
is contained in the set of singular points of Sec(X).
5. Show that a line ` is tangent to an algebraic set X at a point x ∈ X if and only if
the restriction to ` of any polynomial vanishing on X has the point x as its multiple
root.
6*. Let X be a nonsingular irreducible projective curve in Pn(K). Show that the
image of the Gauss map g : X → G(2, n + 1) is birationally isomorphic to X unless
X is a line.
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Lecture 16

Blowing up and resolution of
singularities

Let us consider the projection map pa : Pn(K) \ {a} → Pn−1(K). If n > 1 it is
impossible to extend it to the point a. However, we may try to find another projective
set X which contains an open subset isomorphic to Pn(K) \ {a} such that the map
pa extends to a regular map p̄a : X → Pn−1(K). The easiest way to do it is to
consider the graph Γ ⊂ Pn(K) \ {a} × Pn−1(K) of the map pa and take for X its
closure in Pn(K)×Pn−1(K). The second projection map X → Pn−1(K) will solve our
problem. It is easy to find the bi-homogeneous equations defining X. For simplicity
we may assume that a = (1, 0, . . . , 0) so that the map pa is given by the formula
(x0, x, . . . , xn) → (x1, . . . , xn). Let Z0, . . . , Zn be projective coordinates in Pn(K)
and let T1, . . . , Tn be projective coordinates in Pn−1(K). Obviously, the graph Γ is
contained in the closed set X defined by the equations

ZiTj − ZjTi = 0, i, j = 1, . . . , n. (16.1)

The projection q : X → Pn−1(K) has the fibre over a point t = (t1, . . . , tn) equal to
the linear subspace of Pn(K) defined by the equations

Zitj − Zjti = 0, i, j = 1, . . . , n. (16.2)

Assume that ti = 1. Then the matrix of coefficients of the system of linear equations
(16.2) contains n − 1 unit columns so that its rank is equal to n − 1. This shows
that the fibre q−1(t) is isomorphic, under the first projection X → Pn(K), to the line
spanned by the points (0, t1, . . . , tn) and (1, 0, . . . , 0). On the other hand the first
projection is an isomorphism over Pn(K) \ {0}. Since X is irreducible (all fibres of
q are of the same dimension), we obtain that X is equal to the closure of Γ. By
plugging z1 = . . . zn in equations (16.2) we see that the fibre of p over the point
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a = (1, 0, . . . , 0) is isomorphic to the projective space Pn−1(K). Under the map q this
fibre is mapped isomorphically to Pn−1(K).

The pre-image of the subset Pn(K) \V (Z0) ∼= An(K) under the map p is isomor-
phic to the closed subvariety B of An(K)×Pn−1(K) given by the equations (∗) where
we consider Z1, . . . , Zn as inhomogeneous coordinates in affine space. The restriction
of the map p to B is a regular map σ : B → An(K) satisfying the following properties

(i) σ|σ−1(An(K) \ {(0, . . . , 0)})→ An(K) \ {(0, . . . , 0)} is an isomorphism;

(ii) σ−1(0, . . . , 0) ∼= Pn−1(K).

We express this by saying that σ “ blows up” the origin. Of course if we take n = 1
nothing happens. The algebraic set B is isomorphic to An(K). But if take n = 2,
then B is equal to the closed subset of A2(K)× P1(K) defined by the equation

Z2T0 − T1Z1 = 0.

It is equal to the union of two affine algebraic sets V0 and V1 defined by the condition
T0 6= 0 and T1 6= 0, respectively. We have

V0 = V (Z2 −XZ1) ⊂ A2(K)× P1(K)0, X = T1/T0,

V1 = V (Z2Y − Z1) ⊂ A2(K)× P1(K)1, Y = T0/T1.

If L : Z2 − tZ1 = 0 is the line in A2(K) through the origin “with slope” t, then the
pre-image of this line under the projection σ : B → A2(K) consists of the union of
two curves, the fibre E ∼= P1(K) over the origin, and the curve L̄ isomorphic to L
under σ. The curve L̄ intersects E at the point ((0, 0), (1, t)) ∈ V0. The pre-image
of each line L with the equation tZ2 − Z1 consists of E and the curve intersecting
E at the point ((0, 0), (t, 1)) ∈ V1. Thus the points of E can be thought as the set
of slopes of the lines through (0, 0). The ”infinite slope” corresponding to the line
Z1 = 0 is the point (0, 1) ∈ V1 ∩ E.

Let I be an ideal in a commutative ring A. Each power In of I is a A-module and
InIr ⊂ In+r for every n, r ≥ 0. This shows that the multiplication maps In × Ir →
In+r define a ring structure on the direct sum of A-modules

A(I) = ⊕n≥0I
n.

Moreover, it makes this ring a graded algebra over A = A(I)0 = I0. Its homogeneous
elements of degree n are elements of In.

Assume now that I is generated by a finite set f0, . . . , fn of elements ofA. Consider
the surjective homomorphism of graded A-algebras

φ : A[T0, . . . , Tn]→ A(I)
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defined by sending Ti to fi. The kernelKer(φ) is a homogeneous ideal inA[T0, . . . , Tn].
If we additionally assume that A is a finitely generated algebra over a field k, we can
interpret Ker(φ) as the ideal defining a closed subset in the product X×Pnk where X
is an affine algebraic variety with O(X) ∼= A. Let Y be the subvariety of X defined
by the ideal I.

Definition 16.1. The subvariety of X × Pnk defined by the ideal Ker(φ) is denoted
by BY (X) and is called the blow-up of X along Y . The morphism σ : BY (X)→ X
defined by the projection X × Pnk → X is called the monoidal transformation or the
σ-process or the blowing up morphism along Y .

Let us fix an algebraically closed field K containing k and describe the algebraic
set BY (X)(K) as a subset of X(K)×Pn(K). Let Ui = X×(Pn(K))i and BY (X)i =
BY (X) ∩ Ui. This is an affine algebraic k-set with

O(BY (X)i) ∼= O(X)[T0/Ti. . . . , Tn/Ti]/Ker(φ)i

where Ker(φ)i is obtained from the ideal Ker(φ) by dehomogenization with respect
to the variable Ti. The fact that the isomorphism class of BY (X) is independent of
the choice of generators f0, . . . , fn follows from the following

Lemma 16.1. Let Y ⊂ X×Pnk(K) and Y ′ ⊂ X×Prk(K) be two closed subsets defined
by homogeneous ideals I ⊂ O(X)[T0, . . . , Tn] and J ⊂ O(X)[T ′0, . . . , T

′
r], respectively.

Let p : Y → X and p′ : Y ′ → X be the regular maps induced by the first projections
X × Pnk(K) → X and X × Prk(K) → X. Assume that there is an isomorphism of
graded O(X)-algebras ψ : O(X)[T ′0, . . . , T

′
r]/I

′ → O(X)[T0, . . . , Tn]/I. Then there
exists an isomorphism f : Y → Y ′ such that p = p′ ◦ f .

Proof. Let t′i = T ′i mod I ′, ti = Ti mod I, and let

ψ(t′i) = Fi(t1, . . . , tn), i = 0, . . . , r,

for some polynomial Fi[T0, . . . , Tn]. Since ψ is an isomorphism of graded O(X)-
algebras the polynomials Fi(T ) are linear and its coefficients are regular functions on
X. The value of Fi at a point (x, t) = (x, (t0, . . . , tn)) in X × Pnk(K) is defined
by plugging x into the coefficients and plugging t into the unknowns Tj . Define
f : Y → Y ′ by the formula:

f(x, t) = (x, (F0(x, t), . . . , Fn(x, t))).

Since ψ is invertible, there exist linear polynomials Gj(T ) ∈ O(X)[T ′0, . . . , T
′
r], j =

0, . . . , n, such that

Fi(G0(t′0, . . . , t
′
n), . . . , Gn(t0, . . . , t

′
n)) = t′i, i = 0, . . . , r,



162 LECTURE 16. BLOWING UP AND RESOLUTION OF SINGULARITIES

Gj(F0(t0, . . . , tn), . . . , Fn(t0, . . . , tn)) = tj , j = 0, . . . , n.

This easily implies that f is defined everywhere and is invertible. The property p = p′◦f
follows from the definition of f .

Example 16.2. We take X = A2
k(K),O(X) = k[Z1, Z2], I = (Z1, Z2), Y = V (I) =

{(0, 0)}. Then φ : k[Z1, Z2][T0, T1] → k[Z1, Z2](I) is defined by sending T0 to Z1,
and T1 to Z2. Obviously, Ker(φ) contains Z2T0 − Z1T1. We will prove later in
Proposition 16.6 that Ker(φ) = (Z2T0 − Z1T1). Thus BY (X) coincides with the
example considered in the beginning of the Lecture.

Lemma 16.3. Let U = D(f) ⊂ X be a principal affine open subset of an affine set
X, then

BY ∩U (U) ∼= σ−1(U).

Proof. We have O(U) ∼= O(X)f , I(Y ∩ U) = I(Y )f . If I(Y ) is generated by
f0, . . . , fn then I(Y ∩ U) is generated by f0/1, . . . , fn/1, hence BY ∩U is defined
by the kernel of the homomorphism

φf : O(X)f [T0, . . . , Tn]→ O(X)(I(Y )f ), Ti → fi/1.

Obviously, the latter is obtained by localizing the homomorphism of O(X)-algebras

φ : O(X)[T0, . . . , Tn]→ O(X)(I(Y )), Ti → fi.

Therefore the kernel of φf is isomorphic to (Ker(φ))f . The set of zeroes of this ideal
is equal to σ−1(D(f)).

Proposition 16.4. The blow-up σ : BY (X)→ X induces an isomorphism

σ−1(X \ Y ) ∼= X \ Y.

Proof. It is enough to show that for any principal open subset that U = D(f) ⊂ X \Y
the induced map σ−1(U) → U is an isomorphism. Since Y ⊂ X \ U and I(Y ) is
radical ideal, f must belong to I(Y ). Thus I(Y )f = O(X)f and, taking 1 as a
generator of I(Y )f we get O(X)f ((1) = O(X)f , and the map φf : O(X)f [T0] →
O(X)f , T0 → 1 has the kernel equal to (T0 − 1). Applying the previous Lemma, we
get B∅(D(f)) ∼= D(f) ∼= σ−1(D(f)). This proves the assertion.

To find explicitly the equations of the blow-up BY (X), we need to make some
assumptions on X and Y .
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Definition 16.2. Let A be a commutative ring. A sequence of elements a1, . . . , an ∈ A
is called a regular sequence if the ideal generated by a1, . . . , an is a proper ideal of A
and, for any i = 1, . . . , n, the image of ai in A/(a1, . . . , ai−1) is a non-zero divisor
(we set a0 = 0).

Lemma 16.5. Let M be a module overa commutative ring A. Assume that for any
maximal ideal m of A, the localization Mm = {0}. Then M = {0}.

Proof. Let x ∈ M . For any maximal ideal m ⊂ A, there exists am 6∈ m such that
amx = 0. The ideal of A generated by the elements am is the unit ideal. Hence
1 =

∑
m bmam for some bm ∈ A and

x = 1 · x =
∑
m

bmamx = 0.

This proves the assertion.

Proposition 16.6. Let a0, . . . , an be a regular sequence of elements in an integral
domain A and let I be the ideal generated by a1, . . . , an. Then the kernel J of the
homomorphism

φ : A[T0, . . . , Tn]→ A(I), Ti 7→ ai,

is generated by the polynomials Pij = aiTj − ajTi, i, j = 0, . . . , n.

Proof. Let J ′ be the ideal in A[T0, . . . , Tn] generated by the polynomials Pij . Let A0 =
A[a−1

0 ] ∼= Aa0 be the subring of the quotient fieldQ(A) ofA, I0 = (a1/a0, . . . , an/a0) ⊂
A0. Define a homomorphism φ0 : A[Z1, . . . , Zn] → A0[I0] via sending each Zi to
ai/a0. We claim that J0 = Ker(φ0) is equal to the ideal J ′0 generated by the poly-
nomials Li = a0Zi − ai. Assume this is so. Then for any F (T0, . . . , Tn) ∈ Ker(φ),
after dehomogenizing with respect to T0, we obtain that F (1, Z1, . . . , Zn) belongs
to J ′0. This would immediately imply that TN0 F ∈ J ′ for some N ≥ 0. Replac-
ing T0 with Ti, and f0 with fi, we will similarly prove that TNi F ∈ J ′ for any
i = 0, . . . , n. Now consider the A-submodule M of A[T0, . . . , Tn]/J ′ generated by F .
Since TNi F = 0, i = 0, . . . , n, it is a finitely generated A-module. For any maximal
ideal m ⊂ A let P̄ij = (ai mod m)Tj− (aj mod m)Ti. The ideal in (A/m)[T0, . . . , Tn]
generated by the linear polynomials P̄ij is obviously prime. Thus TNi F = 0 implies
M ⊗ A/m = {0}. Applying Nakayama’s Lemma we infer that, for any maximal ideal
m ⊂ A, the localization Mm is equal to zero. By the previous lemma this gives M = 0
so that F ∈ J ′.

It remains to show that Ker(φ0) is generated by by the polynomials Li = a0Zi−ai.
We use induction on n. Assume n = 1. Let F ∈ Ker(φ0), i.e., φ0(F (Z1)) =
F (a1/a0) = 0. Dividing by L1 = a0Z1 − a1, we obtain for some G(Z1) ∈ A[Z1] and
r ≥ 0

ar0F (Z1) = G(Z1)(a0Z1 − a1) = a0G(Z1)Z1 − a1G(Z1).
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Since (a0, a1) is a regular sequence, this implies that G(a) ∈ (a0) for any a ∈ A. From
this we deduce that all coefficients of G(Z1) are divisible by a0 so that we can cancel
a0 in the previous equation. Proceeding in this way we find, by induction on r, that
F is divisible by L1.

Now assume n > 1 and consider the map φ0 as the composition map

A[Z1, . . . , Zn]→ A′[Z2, . . . , Zn]→ A0[I0] = A′[I ′],

where A′ = A[a1/a0] is the subalgebra of A0 generated by a1/a0, and I ′ = (a2/a0, . . . ,
an/a0). It is easy to see that a0, . . . , an is a regular sequence in A′. By induction,
L2, . . . , Ln generate the kernel of the second map A′[Z2, . . . , Zn] → A0[I0]. Thus
F (Z1, . . . , Zn) ∈ Ker(φ0) implies

F (a1/a0, Z2, . . . , Zn) =
n∑
i=2

Qi(a1/a0, Z2, . . . , Zn)Li,

for some polynomials Qi(Z1, . . . , Zn) ∈ A[Z1, . . . , Zn]. Thus by the case n = 1

F (Z1, . . . , Zn)−
n∑
i=2

Qi(a1/a0, Z2, . . . , Zn)Li ∈ (L1),

and we are done.

Example 16.7. Take A = k[Z1, . . . , ZN ], I = (a0, . . . , an) = (Z1, . . . , Zn+1) to
obtain that the blow-up BV (I)(ANk )(K)) is a subvariety of ANk × Pnk given by the
equations

T0Zi − Ti−1Z1 = 0, i = 1, . . . , n+ 1.

This agrees with Example 16.2

The assertion of Proposition 16.6 can be generalized as follows. Let a1, . . . , an
be a regular sequence in A. Consider the free module An with basis e1, . . . , en and
let
∧r An be its r-th exterior power. It is a free A-module with basis formed by the

wedge products ei1 ∧ . . . ∧ eir where 1 ≤ i1 < . . . , ir ≤ n. For each r = 1, . . . , n.
Define the map

δr :
r∧
An →

r−1∧
An

by the formula

δr(ei1 ∧ . . . ∧ eir) =
∑
i

(−1)jaijei1 ∧ . . . ∧ eij−1 ∧ eij+1 . . . ∧ eir .
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Now the claim is that the complex of A-modules (called the Koszul complex)

{0} →
n∧
An →

n−1∧
An → . . .→

2∧
An →

1∧
An → A→ A/(a1, . . . , an)→ {0}

is exact. The previous proposition asserts only that this complex is exact at the term∧1An.

Proposition 16.8. Let X be an affine irreducible algebraic k-set, I be an ideal in
O(X) generated by a regular sequence (f0, . . . , fn), and let Y = V (I) be the set of
zeroes of this ideal. Let σ : BY (X)→ X be the blow-up of X along Y . Then for any
x ∈ Y ,

σ−1(x) ∼= Pn(K).

The pre-image of every irreducible component of Y is an irreducible subset of BY (X)
of codimension 1.

Proof. By Proposition 16.6, Z = BY (X) is a closed subset of X × Pn(K) defined by
the equations

T0fi − Tif0 = 0, i = 1, . . . , n.

For any point y ∈ Y we have f0(y) = . . . = fn(y) = 0. Hence for any t ∈ Pn(K), the
point (y, t) is a zero of the above equations. This shows that σ−1(y) is equal to the
fibre of the projection X×Pn(K)→ X over y which is obviously equal to Pn(K). For
each irreducible component Yi of Y the restriction map σ : σ−1(Yi) → Yi has fibres
isomorphic to n-dimensional projective spaces. By Lemma 12.7 of Lecture 12 (plus
the remark made in the proof of Lemma 15.5 in Lecture 15) we find that σ−1(Yi) is
irreducible of dimension equal to n + dim Yi. By Krull’s Hauptidealsatz, dim Yi =
dim X − n− 1 (here we use again that (f0, . . . , fn) is a regular sequence).

Lemma 16.9. Let X be a nonsingular irreducible affine algebraic k-set, Y be a non-
singular closed subset of X. For any x ∈ Y with dimx Y = dimxX − n there exists
an affine open neighborhood U of x in X such that Y ∩ U = V (f1, . . . , fn) for some
regular sequence (f1, . . . , fn) of elements in O(U).

Proof. Induction on n. The case n = 1 has been proven in Lecture 13. Let f0 ∈ I(Y )
such that its germ (f0)x in mX,x does not belong to m2

X,x. Let Y ′ = V (f0). By Lemma
14.7 from lecture 14, T (Y ′)x is of codimension 1 in T (X)x. By Krull’s Hauptidealsatz,
dimx Y

′ = dim X−1, hence Y ′ is nonsingular at x. Replacing X with a smaller open
affine set U , we may assume that Y ′ ∩U is nonsingular everywhere. By induction, for
some V ⊂ Y ′, Y ∩ V is given in V by an ideal (f1, . . . , fn) so that Y is given locally
by the ideal (f0, . . . , fn). Now the assertion follows from the following statement from
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Commutative Algebra (see Matsumura, pg.105): A sequence (a1, . . . , an) of elements
from the maximal ideal of a regular local ring A is a regular sequence if and only if
dimA/(a1, . . . , an) = dim A − n. By this result, the germs of f0, . . . , fn in OX,x
form a regular sequence. Then it is easy to see that their representatives in some
O(U) form a regular sequence.

Theorem 16.10. Let σ : BY (X) → X be the blow-up of a nonsingular irreducible
affine algebraic k-set X along a nonsingular closed subset Y . Then the following is
true

(i) σ is an isomorphism outside Y ;

(ii) BY (X) is nonsingular;

(iii) for any y ∈ Y, σ−1(y) ∼= Pn(K), where n = codimy(Y,X) − 1 = dim X −
dimy Y − 1;

(iv) for any irreducible component Yi of Y , σ−1(Yi) is an irreducible subset of
codimension one.

Proof. Properties (i) and (iv) have been already verified. Property (iii) follows from
Proposition 16.8 and Lemma 16.9. We include them only for completeness sake. Using
(i), we have to verify the nonsingularity of BY (X) only at points x′ with σ(x′) =
y ∈ Y . Replacing X by an open affine neighborhood U of y, we may assume that
Y = V (I) where I is an ideal generated by a regular sequence f0, . . . , fn. By Lemma
16.3, σ−1(U) ∼= BY ∩U (U) so that we may assume X = U . By Proposition 16.6,
BY (X) ⊂ X × Pnk(K) is given by the equations: fiTj − fjTi = 0, i, j = 0, . . . , n. Let
p = (y, t) ∈ BY (X) where y ∈ Y, t = (t0, . . . , tn) ∈ Pn(K). We want to verify that it
is a nonsingular point of BY (X). Without loss of generality we may assume that the
point p lies in the open subset W = BY (X)0 where t0 6= 0. Since

T0(fiTj − fjTi) = Ti(f0Tj − fjT0)− Tj(f0Ti − fiT0)

we may assume that BY (X) is given by the equations

f0Ti − fiT0 = 0, i = 0, . . . , n

in an affine neighborhood of the point p. Let G1(T1, . . . , TN ) = . . . = Gm(T1, . . . , TN )
be the system of equations defining X in AN (K) and let Fi(T1, . . . , TN ) represent the
function fi. Then W is given by the following equations in AN (K)× An(K):

Gs(T1, . . . , TN ) = 0, s = 1, . . . ,m,

ZiF0(T1, . . . , TN )− Fi(T1, . . . , TN ) = 0, i = 1, . . . , n.
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It is easy to compute the Jacobian matrix. We get

∂G1
∂T1

(y, z) . . . ∂G1
∂TN

(y, z) 0 . . . . . . 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
∂Gm
∂T1

(y, z) . . . ∂Gm
∂TN

(y, z) 0 . . . . . . 0

z1
∂F0
∂T1

(y)− ∂F1
∂T1

(y) . . . z1
∂F0
∂TN

(y)− ∂F1
∂TN

(y) −F0(y) 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

z1
∂F0
∂T1

(y)− ∂Fn
∂T1

(y) . . . z1
∂F0
∂TN

(y)− ∂Fn
∂TN

(y) −Fn(y) 0 . . . 0


.

We see that the submatrix J1 of J formed by the first N columns is obtained
from the Jacobian matrix of Y computed at the point y by applying elementary row
transformations and when deleting the row corresponding to the polynomial F0. Since
Y is nonsingular at y, the rank of J1 is greater or equal than N − dimx Y − 1 =
N −dim X +n. So rank J ≥ N +n−dim X = N +n−dim BY (X). This implies
that BY (X) is nonsingular at the point (y, z).

The pre-image E = σ−1(Y ) of Y is called the exceptional divisor of the blowing
up σ : BY (X)→ X. The map σ “blows down” E of BY (X) to the closed subset Y
of X of codimension n+ 1.

Lemma 16.3 allows us to ‘globalize’ the definition of the blow-up. Let X be any
quasi-projective algebraic set and Y be its closed subset. For every affine open set
U ⊂ X,Y ∩ U is a closed subset of U and the blow-up BY ∩ U(U) is defined. It
can be shown that for any open affine cover {Ui}i∈I of X, the blowing-ups σi :
BUi∩Y (Ui) → Ui and σj : BUj∩Y (Uj) → Uj can be “glued together” along their

isomorphic open subsets σ−1
i (Ui ∩ Uj) ∼= σ−1

j (Uj ∩ Uj). Using more techniques one
can show that there exists a quasi-projective algebraic set BY (X) and a regular map
σ : BY (X) → X such that σ−1(Ui) ∼= BUi∩Y (Ui) and, under this isomorphism, the
restriction of σ to σ−1(Ui) coincides with σi.

The next fundamental results about blow-ups are stated without proof.

Theorem 16.11. Let f : X−→ Y be a rational map between two quasi-projective
algebraic sets. There exists a closed subset Z of X and a regular map f ′ : BZ(X)→ Y
such that f ′ is equal to the composition of the rational map σ : BZ(X)→ X and f .

Although it sounds nice, the theorem gives very little. The structure of the blowing-
up along an arbitrary closed subset is very complicated and hence this theorem gives
little insight into the structure of any birational map. It is conjectured that every
birational map between two nonsingular algebraic sets is the composition of blow-ups
along nonsingular subsets and of their inverses. It is known for surfaces and, under
some restriction, for threefolds.
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Definition 16.3. A birational regular map σ : X̄ → X of algebraic sets is said to be
a resolution of singularities of X if X̄ is nonsingular and σ is an isomorphism over any
open set of X consisting of nonsingular points.

The next fundamental result of Heisuki Hironaka brought him the Fields Medal in
1966:

Theorem 16.12. Let X be an irreducible algebraic set over an algebraically closed
field k of characteristic 0. There exists a sequence of monoidal transformations σi :
Xi → Xi−1, i = 1, . . . , n, along nonsingular closed subsets of Xi−1 contained in the
set of singular points of Xi−1, and such that the composition Xn → X0 = X is a
resolution of singularities.

A most common method for define a resolution of singularities is to embed a
variety into a nonsingular one, blow up the latter and see what happens with the
proper inverse transform of the subvariety (embedded resolution of singularities).

Definition 16.4. Let σ : X → Y be a birational regular map of irreducible algebraic
sets, Z be a closed subset of X. Assume that σ is an isomorphism over an open subset
U of X. The proper inverse transform of Z under σ is the closure of σ−1(U ∩ Z) in
X.

Clearly, the restriction of σ to the proper inverse transform Z ′ of Z is a birational
regular map and Z ′ = σ−1(Z ∩ U) ∪ (Z ′ ∩ σ−1(X \ U).

Example 16.13. Let σ : B = B{0}(A2(K))→ A2(K) be the blowing up of the origin
0 = V (Z1, Z2) in the affine plane. Let

Y = V (Z2
2 − Z2

1 (Z1 + 1)).

The pre-image σ−1(Y ) is the union of the proper inverse transform σ̄−1(Y ) of Y and
the fibre σ−1(0) ∼= P1(K). Let us find σ̄−1(Y ). Recall that B is the union of two
affine pieces:

U = V (Z2 − Z1t) ⊂ X × P1(K)0, t = T1/T0,

V = V (Z2t
′ − Z1) ⊂ X × P1(K)1, t

′ = T0/T1.

The restriction σ1 of σ to U is the regular map U → A2(K) given by the homomor-
phism of rings:

σ∗1 : k[Z1, Z2]→ O(U) = k[Z1, Z2, t]/(Z2 − Z1t) ∼= k[Z1, t].

The pre-image of Y in U is the set of zeroes of the function

σ∗1(Z2
2 − Z2

1 (Z1 + 1)) = Z2
1 (t2 − Z1 − 1)).
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Similarly, the restriction σ2 of σ to V is a regular map V → A2(K) given by the
homomorphism of rings:

σ∗2 : k[Z1, Z2]→ O(U) = k[Z1, Z2, t]/(Z2t
′ − Z1) ∼= k[Z2, t

′].

The pre-image of Y in V is the set of zeroes of the function

σ∗2(Z2
2 − Z2

1 (Z1 + 1)) = Z2
2 (1− t′2(Z2t

′ + 1)).

Thus

σ−1(Y ) ∩ U = E1 ∪ C1, σ
−1(Y ) ∩ V = E2 ∪ C2,

where

E1 = V (Z1), C1 = V (t2 − Z1 − 1) ⊂ U ∼= A2(K),

E2 = V (Z2), C2 = V (1− t′2(Z2t
′ + 1)) ⊂ V ∼= A2(K).

It is clear that

E1 = σ−1(0) ∩ U ∼= A1(K), E2 = σ−1(0) ∩ V ∼= A1(K),

i.e.,σ−1(0) = E1 ∪ E2
∼= P1(K). Thus the proper inverse transform of Y is equal to

the union C = C1∪C2. By differentiating we find that both C1 and C2 are nonsingular
curves, hence C is nonsingular. Moreover,

C1 ∩ σ−1(0) = V (Z1, t
2 − 1) = {(0, 1), (0,−1)},

C2 ∩ σ−1(0) = V (Z2, t
′2 − 1) = {(0, 1), (0,−1)}.

Note that since t = t′−1 at U ∩ V , we obtain C1 ∩ σ−1(0) = C2 ∩ σ−1(0). Hence
σ−1(0) ∩ C consists of two points. Moreover, it is easy to see that the curve C
intersects the exceptional divisor E = σ−1(0) transversally at the two points. So the
picture is as follows:

The restriction σ : C → Y is a resolution of singularities of Y .

Example 16.14. 4 This time we take Y = V (Z2
1 − Z3

2 ). We leave to the reader
to repeat everything we have done in Example 1 to verify that the proper transform
σ̄−1(Y ) is nonsingular and is tangent to the exceptional divisor E at one point. So,
the picture is like this
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��

σ

Figure 16.1:

Example 16.15. Let Y = V (F (Z1, . . . , Zn)) ⊂ An(K), where F is a homogeneous
polynomial of degree d. We say that Y is a cone over Ȳ = V (F (Z1, . . . , Zn) in
Pn−1(K). If identify An(K) with Pn(K)0, and Ȳ with the closed subset V (Z0, F ) ⊂
V (Z0) ∼= Pn−1(K), we find that Y is the union of the lines joining the point (1, 0, . . . , 0)
with points in Ȳ . Let σ : B = B{0}(An(K)) → An(K) be the blowing up of the
origin in An(K). Then

B = ∪iUi, Ui = B ∩ An(K)× Pn−1(K)i,

and

σ−1(Y ) ∩ Ui = V (F (Z1, . . . Zn)) ∩ V ({Zj − tjZi}j 6=i) ∼= V (Zdi G(t1, . . . , tn−1)),

where tj = Tj/T0, and G is obtained from F via dehomogenization with respect to
Ti. This easily implies that

σ−1(Y ) = σ̄−1(Y ) ∪ σ−1(0), σ̄−1(Y ) ∩ σ−1(0) ∼= Ȳ .

Example 16.16. Let X = V (Z2
1 +Z3

2 +Z4
3 ) ⊂ A3(K) and let Y1 = B{0}(A3(K)) be

the blow-up. The full inverse transform of X in Y1 is the union of three affine open
subsets each isomorphic to a closed subset of A3(K):

V1 : Z2
1 (1 + U3Z1 + V 4Z2

1 ) = 0,

V2 : Z2
2 (U2 + Z2 + V 4Z2

2 ) = 0,

V3 : Z2
3 (U2 + V 3Z3 + Z2

3 ) = 0.
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The equations of the proper inverse transform X1 are obtained by dropping the first
factors. In each piece Vi the equations Zi = 0 define the intersection of the proper
inverse transform X1 of X with the exceptional divisor E1

∼= P2(K). It is empty set in
V1, the affine line U = 0 in V2 and V3. The fibre of the map X1 → X over the origin is
R1
∼= P1(K). It is easy to see (by differentiation) that V1 and V2 are nonsingular but

V3 is singular at the point (U, V, Z3) = (0, 0, 0). Now let us start again. Replace X by
V3
∼= V (Z2

1 + Z3
2Z3 + Z2

3 ) ⊂ A3(K) and blow-up the origin. Then glue the blow-up
with V1 and V2 along V3 ∩ (V1 ∪V2). We obtain that the proper inverse transform X2

of X1 is covered by V1, V2 as above and three more pieces

V4 : 1 + U3V Z2
1 + V 2 = 0

V5 : U2 + Z2
2V + V 2 = 0,

V6 : U2 + V 3Z2
3 + 1 = 0.

The fibre over the origin is the union of two curves R2, R3 each isomorphic to P1(K).
The equation of R2 ∪ R3 in V5 is U2 + V 2 = 0. The equation of R2 ∪ R3 in V3

is U2 + 1 = 0. Since R1 ∩ V3 was given by the equation Z3 = 0 and we used the
substitution Z3 = V Z2 in V5, we see that the pre-image of R1 intersects R1 and R2

at their common point (U, V, Z2) = (0, 0, 0) in V5. This point is the unique singular
point of X2. Let us blow-up the origin in V5. We obtain X3 which is covered by open
sets isomorphic to V1, V2, V4, V6 and three more pieces:

V7 : 1 + V U2Z1 + V 2 = 0,

V8 : U2 + V 2Z3 + 1.

V9 : U2 + V Z2 + V 2 = 0,

The pre-image of the origin in the proper inverse transform X3 of X2 consists of
two curves R4, R5 each isomorphic to P1(K). In the open set V9 they are given
by the equations V = 0, U = ±

√
−1V . The inverse image of the curve R1 inter-

sects R4, R5 at their intersection point. The inverse images of R2 intersects R4 at
the point (U, V, Z2) = (1,

√
−1, 0), the inverse image of R3 intersects R5 at the

point (1,−
√
−1, 0). Finally we blow up the origin at V9 and obtain that the proper-

inverse transform X4 is nonsingular. It is covered by open affine subsets isomorphic
to V1, . . . , V8 and three more open sets

V10 : 1 + UV + V 2 = 0,

V11 : U2 + V + V 2 = 0,

V12 : U2 + V + 1 = 0.
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The pre-image of the origin in X4 is a curve R6
∼= P1(K). It is given by the ho-

mogeneous equation T 2
0 + T1T2 + T 2

2 in homogeneous coordinates of the exceptional
divisor of the blow-up (compare it with Example 16.15). The image of the curve R1

intersects R6 at one point. So we get a resolution of singularities σ : X̄ = X4 → X
with σ−1 equal to the union of six curves each isomorphic to projective line. They
intersect each other according to the picture:

Let Γ be the graph whose vertices correspond to irreducible components of σ−1(0)
and edges to intersection points of components. In this way we obtain the graph

It is the Dynkin diagram of simple Lie algebra of type E6.

• • • • •

•
Figure 16.2:

Exercises.

1. Prove that BV (I)(X) is not affine unless I is (locally ) a principal ideal.

2. Resolve the singularities of the curve xn + yr = 0, (n, r) = 1, by a sequence
of blow-ups in the ambient space. How many blow-ups do you need to resolve the
singularity?

3. Resolve the singularity of the affine surface X : Z2
1 + Z3

2 + Z3
3 = 0 by a sequence

of blow-ups in the ambient space. Describe the exceptional curve of the resolution
f : X̄ → X.

4. Describe A(I), where A = k[Z1, Z2, ], I = (Z1, Z
2
2 ). Find the closed subset BI(A)

of A2(K) × P1(K) defined by the kernel of the homomorphism φ : A[T0, T1] →
A(I), T0 → Z1, T2 → Z2

2 . Is it nonsingular?

5*. Resolve the singularities of the affine surface X : Z2
1 +Z3

2 +Z5
3 = 0 by a sequence

of blow-ups in the ambient space. Show that one can find a resolution of singularities
f : X̄ → X such that the graph of irreducible components of f−1(0) is the Dynkin
diagram of the root system of a simple Lie algebra of type E8.

6*. Resolve the singularities of the affine surface X : Z1Z
3
2 + Z3

1 + Z2
3 = 0 by a

sequence of blow-ups in the ambient space. Show that one can find a resolution of
singularities f : X̄ → X such that the graph of irreducible components of f−1(0) is
the Dynkin diagram of the root system of a simple Lie algebra of type E7.

7*. Resolve the singularities of the affine surface X : Z1(Z2
2 + Zn1 ) + Z2

3 = 0 by a
sequence of blow-ups in the ambient space. Show that one can find a resolution of
singularities f : X̄ → X such that the graph of irreducible components of f−1(0) is
the Dynkin diagram of the root system of a simple Lie algebra of type Dn.
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8*. Resolve the singularities of the affine surface X : Z1Z
2
2 +Zn+1

3 = 0 by a sequence
of blow-ups in the ambient space. Show that one can find a resolution of singularities
f : X̄ → X such that the graph of irreducible components of f−1(0) is the Dynkin
diagram of the root system of a simple Lie algebra of type An.

9*. Let f : P2(K)− → P2(K) be the rational map given by the formula T0 →
T1T2, T1 → T2T3, T2 → T0T1. Show that there exist two birational regular maps
σ1, σ2 : X → P2(K) with f ◦ σ1 = σ2 such that the restriction of each σi over
P2(K)j , j = 0, 1, 2 is isomorphic to the blow-up along one point.
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Lecture 17

Riemann-Roch Theorem

Let k be an arbitrary field and K be its algebraic closure. Let X be a projective variety
over k such that X(K) is a connected nonsingular curve.

A divisor on X is an element of the free abelian group ZX generated by the set
X(K) (i.e. a set of maps X(K) → Z with finite support). We can view a divisor as
a formal sum

D =
∑

x∈X(K)

n(x)x,

where x ∈ X, n(x) ∈ Z and n(x) = 0 for all x except finitely many. The group law
is of course defined coefficient-wisely. We denote the group of divisors by Div(X).

A divisor D is called effective if all its coefficients are non-negative. Let Div(X)+

be the semi-group of effective divisors. It defines a partial order on the group Div(X):

D ≥ D′ ⇐⇒ D −D′ ≥ 0.

Any divisor D can be written in a unique way as the difference of effective divisors

D = D+ −D−.

We define the degree of a divisor D =
∑
n(x)x by

deg(D) =
∑

x∈X(K)

n(x)[k(x) : k].

Recall that k(x) is the residue field of the local ring OX,x. If k = K, then k(x) = k.

The local ring OX,x is a regular local ring of dimension 1. Its maximal ideal is
generated by one element t. We call it a local parameter. For any nonzero a ∈ OX,x,
let νx(a) be the smallest r such that a ∈ mr

X,x.

175



176 LECTURE 17. RIEMANN-ROCH THEOREM

Lemma 17.1. Let a, b ∈ OX,x \ {0}. The following properties hold:

(i) νx(ab) = νx(f) + νx(g);

(ii) νx(a+ b) ≥ min{νx(a), νx(b)} if a+ b 6= 0.

Proof. If νx(a) = r, then a = tra0, where a0 6∈ mX,x. Similarly we can write b = tνxb0.
Assume νx(a) ≤ νx(b) Then

ab = tνx(a)+νx(b)a0b0, a+ b = tνx(a)(a0 + tνx(b)−νx(b)b0)

This proves (i),(ii). Note that we have the equality in (ii) when νx(a) 6= νx(b).

Let f ∈ R(X) be a nonzero rational function on X. For any open affine neigh-
borhood U of a point x ∈ X, f can be represented by an element in Q(O(X)). Since
Q(O(X)) = Q(OX,x), we can write f as a fraction a/b, where a, b ∈ OX,x. We set

νx(f) = νx(a)− νx(b).

It follows from Lemma 17.1 (i), that this definition does not depend on the way we
write f as a fraction a/b.

Lemma 17.2. Let f, g ∈ R(X) \ {0}. The following properties hold:

(i) νx(fg) = νx(f) + νx(g);

(ii) νx(f + g) ≥ min{νx(f), νx(g)} if f + g 6= 0;

(iii) νx(f) ≥ 0⇔ f ∈ OX,x;

(iv) νx(f) 6= 0 only for finitely many points x ∈ X(K).

Proof. (i), (ii) follow immediately from Lemma 17.1. Assertion (iii) is immediate.
Let U be an open Zariski set such that f, f−1 ∈ O(U). Then, for any x ∈ U ,
νx(f) = −νx(f−1) ≥ 0 implies that νx(f) = 0. Since X(K) \ U is a finite set, we
get (iv).

Now we can define the divisor of a rational function f by setting

div(f) =
∑

x∈X(K)

νx(f)x.

A divisor of the form div(f) is called a principal divisor
The following Proposition follows immediately from Lemma 17.2.
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Proposition 17.3. For any nonzero f, g ∈ R(X),

div(fg) = div(f) + div(g).

In particular, the map f 7→ div(f) defines a homomorphism of groups

div : R(X)∗ → Div(X).

If D = div(f), we write D+ = div(f)0, D− = div(f)∞. We call div(f)0 the divisor
of zeroes of f and div(f)∞ the divisor of poles of f . We say that νx(f) is the order
of pole (or zero) if x ∈ div(f)∞ (or div(f)0).

We define the divisor class group of X by

Cl(X) = Div(X)/div(R(X)∗).

Two divisors in the same coset are called linearly equivalent. We write this D ∼ D′.
For any divisor D =

∑
n(x)x let

L(D) = {f ∈ R(X) : div(f) +D ≥ 0} = {f ∈ R(X) : νx(f) ≥ −n(x),∀x ∈ X(K)}.

By definition, L(D) contains the zero function f (thinking that νx(f) = ∞ for all
x ∈ X). It follows from Lemma 17.2 that L(D) is a vector space over k. The
Riemann-Roch formula is a formula for the dimension of the vector space L(D).

Proposition 17.4. (i) L(D) is a finite-dimensional vector space over k;

(ii) L(D) ∼= L(D + div(f)) for any f ∈ R(X);

(iii) L(0) = k.

Proof. (i) Let D = D+ −D−. Then D+ = D +D− and for any f ∈ L(D), we have

div(f) +D ≥ 0⇒ div(f) +D +D− = div(f) +D+ ≥ 0.

This shows that f ∈ L(D+). Thus it suffices to show that L(D) is finite-dimensional
for an effective divisor D. Let t be a local parameter at x ∈ X(K), since νx(f)+n(x) ≥
0, νx(tn(x)f) ≥ 0 and hence νx(tn(x)f) ∈ OX,x. Consider the inclusion OX,x ⊂ K[[T ]]
given by the Taylor expansion. Then we can write

f = T−n(x)(

∞∑
i=0

aiT
i),

where the equality is taken in the field of fractions K((T )) of K[[T ]]. We call the
right-hans side, the Laurent series of f at x. Consider the linear map

L(D)→ ⊕x∈X(K)T
−n(x)K[[T ]]/K[[T ]] ∼= ⊕x∈X(K)K

n(x),
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which assigns to f the collection of cosets of the Laurent series of f modulo k[[T ]].
The kernel of this homomorphism consists of functions f such that νx(f) ≥ 0 for all
x ∈ X(K), i.e., regular function on X. Since X(K) is a connected projective set, any
regular function on X is a constant. This shows that L(D)⊗kK is a finite-dimensional
vector space over K. This easily implies that L(D) is a finite-dimensional vector space
over k.

(ii) Let g ∈ L(D + div(f)), then

div(g) + div(f) +D = div(fg) +D ≥ 0.

This shows that the injective homomorphism of the additive groups R(D)→ R(D), g 7→
fg, restricting to the space L(D + div(f)) defines an an injective linear map L(D +
div(f)) ∼= L(D). The inverse map is defined by the multiplication by f−1.

(iii) Clearly L(0) = O(X) = k.

It follows from the previous Proposition that dimk L(D) depends only on the
divisor class of D. Thus the function dim : Div(X) → Z, D 7→ dimk L(D) factors
through a function on Cl(X) which we will continue to denote by dim.

Theorem 17.5. (Riemann-Roch). There exists a unique divisor class KX on X such
that for any divisor class D

dimk L(D) = deg(D) + dimk L(KX −D) + 1− g,

where g = dimk L(KX) (called the genus of X),

Before we start proving this theorem, let us deduce some immediate corollaries.

Taking D from KX , we obtain

deg(D) = 2g − 2.

Taking D = div(f), we get L(D) ∼= L(0) and L(KX − D) ∼= L(KX). Hence
dimk L(D) = 1 and dimk L(KX −D) = g. This gives

deg(div(f)) = 0.

This implies that the degrees of linearly equivalent divisors are equal. In particular, we
can define the degree of a divisor class.

Also observe that, for any divisor D of negative degree we have L(D) = {0}. In
fact, if div(f) + D ≥ 0 for some f ∈ R(X)∗, then deg(div(f) + D) = deg(D) ≥ 0.
Thus if take a divisor D of degree > 2g − 2, we obtain dimL(KX −D) = 0. Thus
the Riemann-Roch Theorem implies the following
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Corollary 17.6. . Assume deg(D) > 2g − 2, then

dimL(D) = deg(D) + 1− g.

Example 17.7. Assume X = P1
k. Let U = P1(K)0 = A1(K) = K. Take D =

x1+. . .+xn, where xi ∈ k. Then L(D) consists of rational functions f = P (Z)/Q(Z),
where P (Z), Q(Z) are polynomials with coefficients in k and Q(T ) has zeroes among
the points xi’s. This easily implies that L(D) consists of functions

P (T0, T1)/(T1 − a0T0) · · · (T1 − xiT0),

where degP (T0, T1) = n. The dimension of L(D) is equal to n + 1. Taking n
sufficiently large, and applying the Corollary, we find that g = 0.

The fact that deg(div(f)) = 0 is used for the proof of the Riemann-Roch formula.
We begin with proving this result which we will need for the proof. Another proof of
the formula, using the sheaf theory, does not depend on this result.

Lemma 17.8. (Approximation lemma). Let x1, . . . , xn ∈ X,φ1, . . . , φn ∈ R(X), and
N be a positive integer. There exists a rational function f ∈ R(X) such that

νx(f − φi) > N, i = 1, . . . , n.

Proof. We may assume that X is a closed subset of Pn. Choose a hyperplane H which
does not contain any of the points xi. Then Pn \H is affine, and U = X ∩ (Pn \H)
is a closed subset of Pn \ H. Thus U is an affine open subset of X containing the
points xi. This allows us to assume that X is affine. Note that we can find a function
gi which vanishes at a point xi and has poles at the other points xj , j 6= i. One
get such a function as the ratio of a function vanishing at xi but not at any xj and
the function which vanishes at all xj but not at xi. Let fi = 1/(1 + gmi ). Then
fi − 1 = −gmi /(1 + gmi ) has zeroes at the points xj and has zero at xi. By taking m
large enough, we may assume that νxi(fi − 1), νxj (fi − 1) are sufficiently large. Now
let

f = f1φ1 + · · ·+ fnφn.

It satisfies the assertion of the lemma. Indeed, we have

νxi(f − φi) = νxi(f1φ1 + . . .+ fi−1φi−1 + (fi − 1)φi + fi+1φi+1 + . . .+ fnφn).

This can be made arbitrary large.

Corollary 17.9. Let x1, . . . , xn ∈ X and m1, . . . ,mn be integers. There exists a
rational function f ∈ R(X) such that

νxi(f) = mi, i = 1, . . . , n.
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Proof. Let t1, . . . , tn be local parameters at x1, . . . , xn, respectively. This means that
νxi(ti) = 1, i = 1, . . . , n. Take N larger than each mi. By the previous lemma, there
exists f ∈ R(X) such that νxi(f − t

mi
i ) > mi, i = 1, . . . , n. Thus, by Lemma 17.2,

νxi(f) = min{νxi(t
mi
i ), νxi(f − t

mi
i )} = mi, i = 1, . . . , n.

Let f : X → Y be a regular map of projective algebraic curves and let y ∈ Y, x ∈
f−1(y). Let t be a local parameter at y. We set

ex(f) = νx(f∗(t)).

It is easy to see that this definition does not depend on the choice of a local parameter.
The number ex(f) is called the index of ramification of f at x.

Lemma 17.10. For any rational function φ ∈ R(Y ) we have

νx(φ∗(φ)) = exνy(φ).

Proof. This follows immediately from the definition of the ramification index and
Lemma 2.

Corollary 17.11. Let f−1(y) = {x1, . . . , xr} and ei = exi . Then

r∑
i=1

ei ≤ [R(X) : f∗(R(Y ))].

Proof. Applying Corollary 17.9, we can find some rational functions φ
(i)
1 , . . . , φ

(i)
ei ,

i = 1, . . . , r such that

νxi(φ
(i)
s ) = s, νxj (φ

(i)
s ) >> 0, j 6= i, s = 1, . . . , ei.

Let us show that
∑r

i=1 ei functions obtained in this way are linearly independent over
f∗(R(Y )). Assume

r∑
i=1

ei∑
s=1

aisφ
(i)
s = 0

for some ais ∈ f∗(R(Y )) which we will identify with functions on Y . Without loss of
generality we may assume that

νy(a1s) = min{νy(ais) : ais 6= 0}.
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Dividing by by a1s, we get
∑

is cisφ
(i)
s = 0, where

c1s = 1, νy(cis) ≥ 0,

We have
e1∑
s=1

φ(1)
s = −

( r∑
i=2

es∑
s=1

cisφ
(i)
s

)
.

By Lemma 17.10,

νx1(c1sφ
(1)
s ) = νx1(c1s) + νx1(φ(1)

s ) ≡ s mod e1.

This easily implies that no subset of summands in the left-hand side L.H.S. add up to
zero. Therefore,

νx1(L.H.S) = min
s
{νx1(c1sφ

(1)
s } ≤ e1.

On the other hand, νx1(R.H.S.) can be made arbitrary large. This contradiction
proves the assertion.

Let Λ be the direct product of the fraction fields R(X)x of the local rings OX,x,
where x ∈ X. By using the Taylor expansion we can embed each R(X)x in the
fraction field K((T )) of K[[T ]]. Thus we may view Λ as the subring of the ring of
functions

K((T ))X = Maps(X,K((T )).

The elements of Λ will be denoted by (ξx)x. We consider the subring AX of Λ formed
by (ξx)x such that ξx ∈ OX,x except for finitely many x’s. Such elements are called
adeles. For each divisor D =

∑
n(x)x, we define the vector space over the field k:

Λ(D) = {(ξx)x ∈ Λ : νx(ξx) ≥ −n(x)}.

Clearly,
Λ(D) ∩R(X) = L(D), Λ(D) ⊂ AX .

For each φ ∈ R(X), let us consider the adele

φ = (φx)x,

where φx is the element of R(X)x represented by φ. Recall that the field of fractions
of OX,x is equal to the field R(X). Such adeles are called principal adeles. We will
identify the subring of principal adeles with R(X).

Lemma 17.12. Assume D′ ≥ D. Then

(i) Λ(D) ⊂ Λ(D′);
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(ii) dim(Λ(D′)/Λ(D)) = deg(D′)− deg(D);

(iii)

dimk L(D′)−dimk L(D) = deg(D′)−deg(D)−dimk(Λ(D′)+R(X)/(Λ(D)+R(X)),

where the sums are taken in the ring of adeles.

Proof. (i) Obvious
(ii) Let D =

∑
n(x)x, D′ =

∑
n(x)′x. If ξ = (ξx)x ∈ L(D′), the Laurent

expansion of ξx looks like

ξx = T−n(x)(a0 + a1T + . . .).

This shows that

Λ(D′)/Λ(D) ∼=
⊕
x∈X

(T−n(x)′K[[T ]]/T−n(x)K[[T ]) ∼=
⊕
x∈X

Kn(x)′−n(x),

which proves (ii).
(iii) Use the following isomorphisms of vector spaces

Λ(D′) +R(X)/Λ(D′) ∩R(X) ∼= Λ(D′)⊕R(X),

Λ(D) +R(X)/Λ(D) ∩R(X) ∼= Λ(D)⊕R(X),

Λ(D′)⊕R(X)/Λ(D)⊕R(X) ∼= Λ(D′)/Λ(D).

Then the canonical surjection

Λ(D′) +R(X)→ Λ(D′)⊕ Λ(D′)⊕R(X)

induces a surjection(
Λ(D′) +R(X)

)
/
(
Λ(D) +R(X)

)
→
(
Λ(D′)⊕R(X)

)
/
(
Λ(D)⊕R(X)

)
with kernel Λ(D′) ∩R(X)/Λ(D) ∩R(X) ∼= L(D′)/L(D). This implies that

deg(D′)− deg(D) = dimk Λ(D′)/Λ(D)

= dimk

(
Λ(D′) +R(X)

)
/
(
Λ(D) +R(X)

)
+ dimk L(D′)/L(D).

Proposition 17.13. In the notation of Corollary 17.11,

e1 + . . .+ er = [R(X) : f∗(R(Y ))].
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Proof. Let f : X → Y , g : Y → Z be two regular maps. Let z ∈ Z and

g−1(z) = {y1, . . . , yr}, f−1(yj) = {x1j , . . . , xrjj}.

Denote by ei the ramification index of g at yi and by eij the ramification index of f
at xij . By Corollary 17.9,∑

ejeij = e1(
∑

ei1) + . . .+ er(
∑

eir) ≤ (
∑

ej)[R(X) : f∗(R(Y ))].

If we prove the theorem for the maps g and g ◦ f , we get

[R(X) : R(Z)] =
∑

eieij ≤ [R(Y ) : R(Z)][R(X) : R(Y )] = [R(X) : R(Z)]

which proves the assertion.

Let φ ∈ R(Y ) considered as a rational (and hence regular) map g : Y → P1 of
nonsingular projective curves. The composed map g ◦ f : X → P1 is defined by the
rational function f∗(φ) ∈ R(X). By the previous argument, it is enough to prove the
proposition in the case when f is a regular map from X to P1 defined by a rational
function φ. If t = T1/T0 ∈ R(P1), then φ = f∗(t). Without loss of generality we may
assume that y =∞ = (0, 1) ∈ P1. Let f−1(y) = {x1, . . . , xr}. It is clear that

νxi(φ) = νxi(f
∗(t)) = −νxi(f∗(t−1)).

Since t is a local parameter at y, the divisor D = div(φ)∞ of poles of f is equal to
the sum

∑
eixi. Let (φ1, . . . , φn) be a basis of R(X) over R(P1). Each φi satisfies

an equation
a0(φ)Xd + a1(φ)Xd−1 + . . .+ ad(φ) = 0,

where ai(Z) some rational function in a variable Z. After reducing to common de-
nominator and multiplying the equation by the (d− 1)th power of the first coefficient,
we may assume that the equation is monic, and hence each φi is integral over the ring
K[t], but 1 + a1(φ)φ−1

i + . . .+ ad(φ)φ−di = 0 shows that this is impossible. Thus we
see that every pole of φi belongs to the set f−1(∞) of poles of φ. Choose an integer
m0 such that

div(φi) +m0D ≥ 0, i = 1, . . . , n.

Let m be sufficiently large integer. For each integer s satisfying 0 ≤ s ≤ m−m0, we
have φsφi ∈ L(mD). Since the set of functions

φsφi, i = 1, . . . , n, s = 0, . . . ,m−m0

is linearly independent over k, we obtain dimk L(mD) ≥ (m − m0 + 1)n. Now we
apply Lemma 17.12 (iii), taking D′ = mD,D = 0. Let

Nm = dimk(Λ(mD) +R(X)/Λ(0) +R(X)).
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Then

mdeg(D) = m(
∑

ei) = Nm + dimL(mD)− 1 ≥ Nm + (m−m0 + 1)n− 1.

Dividing by m and letting m go to infinity, we obtain
∑
ei ≥ n = [R(X) : R(Y )].

Together with Corollary 17.9, this proves the assertion.

Corollary 17.14. For any rational function φ ∈ R(X),

deg(div(f)) = 0.

Proof. Let f : X → P1 be the regular map defined by φ. Then, as we saw in the
previous proof, deg(div(f)∞) = [R(X) : k(φ)]. Similarly, we have deg(div(φ−1)∞) =
[R(X) : k(φ)]. Since div(φ) = div(f)0 − div(f)∞, we are done.

Corollary 17.15. Assume deg(D) < 0. Then L(D) = {0}.

Set
r(D) = deg(D)− dimL(D).

By Corollary 17.6, this number depends only on the linear equivalence class of D. Note
that, assuming the Riemann-Roch Theorem, we have r(D) = g−1−dimL(K−D) ≤
g − 1. This shows that the function D 7→ r(D) is bounded on the set of divisors. Let
us prove it.

Lemma 17.16. . The function D 7→ r(D) is bounded on the set Div(X).

Proof. As we have already observed, it suffices to prove the boundness of this function
on Cl(X). By Proposition 17.13 (iii), for any two divisors D′, D with D′ ≥ D,

r(D′)− r(D) = dim(Λ(D′) +R(X))/(Λ(D) +R(X)) ≥ 0.

Take a non-zero rational function φ ∈ R(X). Let D = div(φ)∞, n = degD. As we
saw in the proof of Proposition 17.13,

mn ≥ r(mD)− r(0) +m(m−m0 − n)− 1 = r(mD) +mn−m0n.

This implies r(mD) ≤ m0n − n, hence r(mD) is bounded as a function of n. Let
D′ =

∑
n(xi)xi be a divisor, yi = f(xi) ∈ P1, where f : X → P1 is the regular map

defined by φ. Let P (t) be a polynomial vanishing at the points yi which belong to
the affine part (P1)0. Replacing P (t) by some power, if needed, we have f∗(P (t)) =
P (φ) ∈ R(X) and div(P (φ)) +mD ≥ D′ for sufficiently large m. This implies that

r(D′) ≤ r(mD + div(P (φ))) = r(mD)).

This proves the assertion.



185

Corollary 17.17. For any divisor D

dimA/(Λ(D) +R(X)) <∞.

Proof. We know that

r(D′)− r(D) = dim(Λ(D′) +R(X)/Λ(D) +R(X))

is bounded on the set of pairs (D,D′) with D′ ≥ D. Since every adele ξ belongs to
some space Λ(D), the falsity of our assertion implies that we can make the spaces
(Λ(D′)+R(X)/Λ(D)+R(X)) of arbitrary dimension. This contradicts the boundness
of r(D′)− r(D).

Let
H(D) = A/(Λ(D) +R(X)).

We have r(D′)− r(D) = dimkH(D)− dimkH(D′) if D′ ≥ D. In particular, setting

g = dimkH(0),

we obtain
r(D) = g − 1− dimkH(D),

or, equivalently

dimk L(D) = deg(D) + dimkH(D)− g + 1. (17.1)

To prove the Riemann-Roch Theorem, it suffices to show that

dimkH(D) = dimk L(K −D).

To do this we need the notion of a differential of the field X.
A differential ω of R(X) is a linear function on A which vanish on some subspace

Λ(D) + R(X). A differential can be viewed as an element of the dual space H(D)∗

for some divisor D.
Note that the set Ω(X) of differentials is a vector space over the field R(X).

Indeed, for any φ ∈ R(X) and ω ∈ Ω(X), we can define

φω(ξ) = ω(φξ).

This makes Ω(X) a vector space over R(X). If ω ∈ H(D)∗, then φω ∈ H(D −
div(φ))∗.

Let us prove that
dimR(X) Ω(X) = 1.
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Lemma 17.18. Let ω ∈ Ω(X). There exists a maximal divisor D (with respect to
the natural order on Div(X)) such that ω ∈ H(D)∗.

Proof. If ω ∈ H(D1)∗ ∪H(D2)∗, then ω ∈ H(D3)∗, where D3 = sup(D1, D2). This
shows that it suffices to verify that the degrees of D such that ω ∈ H(D)∗ is bounded.
Let D′ be any divisor, φ ∈ L(D′). Since D + div(φ) ≥ D −D′, we have

Λ(D −D′) ⊂ Λ(D + div(φ)).

Let φ1, . . . , φn be linearly independent elements from L(D′). Since ω vanishes on
Λ(D), the functions φ1ω, . . . , φnω vanish on Λ(D − D′) ⊂ Λ(D + div(φi)) and
linearly independent over K. Thus

dimkH(D −D′) ≥ dimk L(D′).

Applying equality (1) from above, we find

dimk L(D −D′) = deg(D) + deg(D′)− 1 + g ≥ dimk L(D′) ≥

deg(D′) + 1− g + dimkH(D′).

Taking D′ with deg(D′) > deg(D) to get L(D −D′) = {0}, we obtain

deg(D) ≤ 2g − 2.

Proposition 17.19.
dimR(X) Ω(X) = 1.

Proof. Let ω, ω′ be two linearly independent differentials. For any linearly independent
(over K) sets of functions {a1, . . . , an}, {b1, . . . , bn} in R(X), the differentials

a1ω, . . . , anω, b1ω
′, . . . , bnω

′ (17.2)

are linearly independent over K. Let D be such that ω, ω′ ∈ Ω(D). It is easy to see
that such D always exists. For any divisor D′, we have

Λ(D −D′) ⊂ Λ(D + div(φ)), ∀φ ∈ L(D′).

Thus the 2n differentials from equation (2), where (a1, . . . , an) and (b1, . . . , bn) are
two bases of L(D′), vanish on Λ(D −D′). Therefore,

dimkH(D −D′) ≥ 2 dimk L(D′).
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Again, as in the proof of the previous lemma, we find

dimk L(D −D′) ≥ 2deg(D′) + 2− 2g.

taking D′ with deg(D′) > deg(D) + 2− 2g, we obtain

0 ≥ 2deg(D′) + 2− 2g > 0.

This contradiction proves the assertion.

For any ω ∈ Ω(X) we define the divisor of ω as the maximal divisor D such that
ω ∈ H(D)∗. We denote it by div(ω).

Corollary 17.20. Let ω, ω′ ∈ Ω(X). Then div(ω) is linearly equivalent to div(ω′).

Proof. We know that ω ∈ H(D) implies φω ∈ H(D + div(φ)). Thus the divisor
of φω is equal to div(ω) + div(φ). But each ω′ ∈ Ω(X) is equal to φω for some
φ ∈ R(X).

The linear equivalence class of the divisor of any differential is denoted by KX . It
is called the canonical class of X. Any divisor from KX is called a canonical divisor
on X.

Theorem 17.21. (Riemann-Roch). Let D be any divisor on X, and K any canonical
divisor. Then

dimk L(D) = deg(D) + dimk L(K −D) + 1− g,

where g = dimk L(K).

Proof. Using formula (2), it suffices to show that

dimkH(D) = dimk L(K −D),

or, equivalently, dimkH(K −D) = dimk L(D). We will construct a natural isomor-
phism of vector spaces

c : L(D)→ H(K −D)∗.

Let φ ∈ L(D),K = div(ω). Then

div(φω) = div(ω) + div(φ) ≥ K −D.

Thus φω vanishes on Λ(K − D), and therefore φω ∈ H(K − D)∗. This defines a
linear map c : L(D) → H(KD)∗. Let α ∈ H(K −D)∗ and K ′ = div(α). Since K ′
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is the maximal divisor D′ such that α vanishes on Λ(D′), we have K ′ ≥ K −D. By
Proposition 17.19, α = φω for some φ ∈ R(X). Hence

K ′ −K = div(α)− div(ω) = div(φ) ≥ −D.

showing that φ ∈ L(D). This defines a linear map

H(K −D)∗ → L(D), α→ φ.

Obviously, this map is the inverse of the map c.

The number g = dimk L(K) is called the genus of X. It is easy to see by going
through the definitions that two isomorphic curves have the same genus.

Now we will give some nice applications of the Riemann-Roch Theorem. We have
already deduced some corollaries from the RRT. We repeat them.

Corollary 17.22.
deg(KX) = 2g − 2,

dimk L(D) = deg(D) + 1− g,

if deg(D) ≥ 2g − 2 and D 6∈ KX .

Theorem 17.23. Assume g = 0 and X(k) 6= ∅ (e.g. k = K). Then X ∼= P1.

Proof. By Riemann-Roch, for any divisor D ≥ 0,

dimk L(D) = deg(D) + 1.

Take D = 1 · x for some point x ∈ X(k). Then deg(D) = 1 and dimL(D) = 2.
Thus there exists a non-constant function φ ∈ R(X) such that div(φ) +D ≥ 0. Since
φ cannot be regular everywhere, this means that φ has a pole of order 1 at x and
regular in X \ {x}. Consider the regular map f : X → P1 defined by φ. The fibre
f−1(∞) consists of one point x and νx(φ) = −1. Applying Proposition 17.13, we find
that [R(X) : R(P1)] = 1, i.e. X is birationally (and hence biregularly) isomorphic to
P1.

Theorem 17.24. Let X = V (F ) ⊂ P2 be a nonsingular plane curve of degree d.
Then

g = (d− 1)(d− 2)/2.

Proof. Let H be a general line intersecting X at d points x1, . . . , xd. By changing
coordinates, we may assume that this line is the line at infinity V (T0). Let D =

∑d
i=1.

It is clear that every rational function φ from the space L(nD), n ≥ 0, is regular on
the affine part U = X ∩ (P2 \ V (T0)). A regular function on U is a n element of
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the ring k[Z1, Z2]/(f(Z1, Z2)), where f(Z1, Z2) = 0 is the affine equation of X. We
may represent it by a polynomial P (Z1, Z2). Now it is easy to compute the dimension
of the space of polynomials P (X1, X2) modulo (f) which belong to the linear space
L(nD). We can write

P (Z1, Z2) =
n∑
i=1

Gi(Z1, Z2),

where Gi(Z1, Z2) is a homogeneous polynomial of degree i. The dimension of the
space of such P ’s is equal to (n + 2)(n + 1)/2. The dimension of P ’s which belong
to (f) is equal to the dimension of the space of polynomials of degree d− n which is
equal to (n− d+ 2)(n− d+ 1)/2. Thus we get

dimL(nD) =
1

2
(n+2)(n+1)/2− 1

2
(n−d+2)(n−d+1) =

1

2
(d−1)(d−2)+1+nd.

When n > 2g − 2, the RRT gives

dimk L(nD) = nd+ 1− g.

comparing the two answers for dimL(D) we obtain the formula for g.

Theorem 17.25. Assume that g = 1 and X(k) 6= ∅. Then X is isomorphic to a plane
curve of degree 3.

Proof. Note that by the previous theorem, the genus of a plane cubic is equal to 1.
Assume g = 1. Then deg(KX) = 2g−2 = 0. Since L(KX −D) = {0} for any divisor
D > 0, the RRT gives

dimL(D) = deg(D).

Take D = 2 · x for some point x ∈ X(k). Then dimL(D) = deg(D) = 2, hence
there exists a non-constant function φ1 such that νx(φ1) ≥ −2, φ1 ∈ O(X \ {x}). If
νx(φ1) = −1, then the argument from Theorem 17.5, shows that X ∼= P1 and hence
g = 0. Thus νx(φ1) = −2. Now take D = 3 · x. We have dimL(D) = 3. Obviously,
L(2 · x) ⊂ L(3x). Hence there exists a function φ2 6∈ L(D) such that νx(φ2) = −3,
φ2 ∈ O(X \ {x}). Next we take D = 6 · x. We have dimL(D) = 6. Obviously, we
have the following functions in L(D):

1, φ1, φ
2
1, φ

3
1, φ2, φ

2
2, φ1φ2.

The number of them is 7, hence they must be linearly dependent in L(6 · x). Let

a0 + a1φ1 + a2φ
2
1 + a3φ

3
1 + a4φ2 + a5φ

2
2 + a6φ1φ2.

with not all coefficients ai ∈ k equal to zero. I claim that a5 6= 0. Indeed, assume that
a5 = 0. Since φ2

1 and φ3
2 are the only functions among the seven ones which has pole
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of order 6 at x, the coefficient a3 must be also zero. Then φ1φ2 is the only function
with pole of order 5 at x. This implies that a6 = 0. Now φ2

1 is the only function with
pole of order 4, so we must have a2 = 0. If a4 6= 0, then φ2 is a linear combination of
1 and φ1, and hence belongs to L(2 · x). This contradicts the choice φ2. So, we get
a0 + a1φ1 = 0. This implies that a0 = a1 = 0.

Consider the map f : X → P1 given by the function φ1. Since φ2 satisfies an
equation of degree 2 with coefficients from the field f∗(R(P1)), we see that [R(X) :
R(P1)] = 2. Thus, adding φ2 to f∗(R(P1)) we get R(X). Let

Φ : X \ {x} → A2

be the regular map defined by Φ∗(Z1) = φ1,Φ
∗(Z2) = φ2. Its image is the affine

curve defined by the equation

a0 + a1Z1 + a2Z
2
1 + a3Z

3
1 + a4Z2 + a5Z

2
2 + a6Z1Z2 = 0.

Since k(X) = k(Φ∗(Z1),Φ∗(Z2)) we see that X is birationally isomorphic to the
affine curve V (F ). Note that a3 6= 0, since otherwise, after homogenizing, we get a
conic which is isomorphic to P1. So, homogenizing F we get a plane cubic curve with
equation

F (T0, T1, T2) = a0T
3
0 +a1T

2
0 T1 +a2T0T

2
1 +a3T

3
1 +a4T

2
0 T2 +a5T0T

2
2 +a6T0T1T2 = 0.

(17.3)
It must be nonsingular, since a singular cubic is obviously rational (consider the pencil of
lines through the singular point to get a rational parameterization). Since a birational
isomorphism of nonsingular projective curves extends to an isomorphism we get the
assertion.

Note that we can simplify the equation of the plane cubic as follows. First we
may assume that a6 = a3 = 1. Suppose that char(k) 6= 2. Replacing Z2 with
Z ′2 = Z2 + 1

2(a6Z1 + a4Z0), we may assume that a4 = a5 = 0. If char(k) 6= 2, 3, then
replacing Z1 with Z1 + 1

3a2Z0, we may assume that a2 = 0. Thus, the equation is
reduced to the form

F (T0, T1, T2) = T0T
2
2 + T 3

1 + a1T
2
0 T1 + a0T

3
0 ,

or, after dehomogenizing,

Z2
2 + Z3

1 + a1Z1 + a0 = 0.

It is called the Weierstrass equation. Since the curve is nonsingular, the cubic poly-
nomial Z3

1 + a1Z1 + a0 does not have multiple roots. This occurs if and only if its
discriminant

∆ = 4a3
1 + 27a2

0 6= 0. (17.4)
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Problems
1. Show that a regular map of nonsingular projective curves is always finite.
2. Prove that for any nonsingular projective curve X of genus g there exists a regular
map f : X → P1 of degree (= [R(X) : f∗(R(P1))]) equal to g = 1.
3. Show that any nonsingular projective curve X of genus 0 with X(k) = ∅ is
isomorphic to a nonsingular conic on P2

k [Hint: Use that dimL(−KX) > 0 to find a
point x with deg(1 · x) = 2].
4. Let X be a nonsingular plane cubic with X(k) 6= ∅. Fix a point x0 ∈ X(k).
For any x, y ∈ X let x ⊕ y be the unique simple pole of a non-constant function
φ ∈ L(x + y − x0). show that x ⊕ y defines a group law on X. Let x0 = (0, 0, 1),
where we assume that X is given by equation (3). Show that x0 is the inflection point
of X and the group law coincides with the group law on X considered in Lecture 6.
5. Prove that two elliptic curves given by Weierstrass equations Z2

2 +Z2
3 +a1Z1+a0 = 0

and Z2
2 + Z2

3 + b1Z1 + b0 = 0 are isomorphic if and only if a3
1/a

2
0 = b31/b

2
0.

6. Let X be a nonsingular curve in P1 × P1 given by a bihomogeneous equation of
degree (d1, d2). Prove that its genus is equal to

g = (d1 − 1)(d2 − 1).

7. Let D =
∑r

i=1 nixi be a positive divisor on a nonsingular projective curve X. For
any x ∈ X \ {x1, . . . , xr} denote, let lx ∈ L(D)∗ be defined by evaluating φ ∈ L(D)
at the point x. Show that this defines a rational map from X to P(L(D)∗). Let
φD : X → P(L(D)∗) be its unique extension to a regular map of projective varieties.
Assume X = P1 and deg(D) = d. Show that φD(P1) is isomorphic to the Veronese
curve νd(P1) ⊂ Pd.
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Fermat hypersurface, 105
field of definition, 7
field of rational functions, 24
finite map, 86
flag variety, 114
flex point, 49

general linear group, 18
genus, 152, 178, 188
geometrically connected, 80
geometrically irreducible, 23
germ, 125
Grassmann variety, 107, 155

Hartshorne’s Conjecture, 154
height, 131
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Hessian polynomial, 52
Hilbert’s Basis Theorem, 22
Hilbert’s Nullstellensatz, 7
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ideal, 41
polynomial, 39
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inflection point, 49
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integral, 84
integral closure, 85
integral element, 9
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irrelevant ideal, 42
isomorphism, 72

of affine varieties, 15

Jacobian criterion, 128
Jacobian matrix, 167

Koszul complex, 165
Krull dimension, 93

of a ring, 94

Lüroth Problem, 28
Laurent series, 177
Lie algebra, 120
line, 31
linear normal, 154
linear projection, 64
local line, 37
local parameter, 175
local ring, 34, 124

regular, 133
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monoidal transformation, 161
morphism, 13

Noetherian ring, 6
nondegenerate subset, 154
nonsingular point, 49
normal ring, 92
normalization, 92

Pfaffian hypersurface, 155
Plücker coordinates, 106
Plücker embedding, 107
Plücker equations, 110
plane projective curve, 47

conic, 47
cubic, 47
quartic, 47
quintic, 47
sextic, 47

product
in a category, 67
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projective algebraic variety, 40, 66
projective automorphism, 63
projective closure, 40
projective module, 33
proper map, 82

quadric, 68

radical, 7, 10
rational function, 24
rational map, 25
rational normal curve, 68
rational point, 122
real projective plane, 32
regular function, 19, 71
regular map, 18, 19, 71
regular point, 134
regular sequence, 163
residue field, 35
resolution of singularities, 168
resultant, 45, 47
Riemann sphere, 32
Riemann-Roch formula, 177
Riemann-Roch Theorem, 178

saturation, 42
secant line, 151
secant variety, 151
Segre map, 66
Segre variety, 66, 155
Severi variety, 154, 155
simple point, 128
singular point, 128
singularities

formal isomorphism, 143
local isomorphism, 143

smooth point, 128
subvariety, 5, 40
system of algebraic equations, 1
system of parameters, 135

regular, 135

tangent line, 149
tangent space, 118

embedded, 149
tangent vector, 118
topological space

connected, 22, 80
irreducible, 21
locally closed, 70
Noetherian, 22
quasi-compact, 74
reducible, 21

total ring of fractions, 33
tritangent plane, 115
trivializing family, 37
truncation, 139

Veronese morphism, 65
Veronese surface, 154, 155
Veronese variety, 65

Weierstrass equation, 190

Zariski differential, 137
Zariski tangent space, 126
Zariski topology, 11, 44, 70
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